The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples
详细信息    查看全文
  • 作者:Maria Buchholz (1)
    Qiang Li (2)
    Heshmat Noei (3) (4)
    Alexei Nefedov (1)
    Yuemin Wang (3) (5)
    Martin Muhler (3)
    Karin Fink (2)
    Christof W枚ll (1)

    1. Institute of Functional Interfaces
    ; Karlsruhe Institute of Technology ; 76021 ; Karlsruhe ; Germany
    2. Institute of Nanotechnology
    ; Karlsruhe Institute of Technology ; 76021 ; Karlsruhe ; Germany
    3. Laboratory of Industrial Chemistry
    ; Ruhr-University Bochum ; 44780 ; Bochum ; Germany
    4. Deutsches Elektronen-Synchrotron (DESY)
    ; 22607 ; Hamburg ; Germany
    5. Department of Physical Chemistry I
    ; Ruhr-University Bochum ; 44780 ; Bochum ; Germany
  • 关键词:Zinc oxide ; Infrared ; IRRAS ; DFT ; Formic acid
  • 刊名:Topics in Catalysis
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:2-3
  • 页码:174-183
  • 全文大小:1,131 KB
  • 参考文献:1. Hansen JB, H酶jlund Nielsen PE (2008) Methanol Synthesis. In: Handbook of Heterogeneous Catalysis. Wiley. doi:10.1002/9783527610044.hetcat0148
    2. Grabow, LC, Mavrikakis, M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. Acs Catal 1: pp. 365-384 CrossRef
    3. Mittasch A, Pier M (1924) Synthetic manufacture of methanol. United States Patent US 1569775, 12. Jan 1926
    4. Gr盲tzel, M (2001) Photoelectrochemical cells. Nature 414: pp. 338-344 CrossRef
    5. Gr盲tzel, M (2003) Dye-sensitized solar cells. J Photochem Photobio C 4: pp. 145-153 CrossRef
    6. Anta, JA, Guill茅n, E, Tena-Zaera, R (2012) ZnO-based dye sensitized solar cells. J Phys Chem C 116: pp. 11413-11425 CrossRef
    7. Davis, R, Walsh, JF, Muryn, CA, Thornton, G, Dhanak, VR, Prince, KC (1993) The orientation of formate and carbonate on ZnO(10-10). Surf Sci 298: pp. L196-L202 CrossRef
    8. Crook, S, Dhariwal, H, Thornton, G (1997) HREELS study of the interaction of formic acid with ZnO(10-10) and ZnO(000-1)-O. Surf Sci 382: pp. 19-25 CrossRef
    9. Lenz, A, Selegard, L, S枚derlind, F, Larsson, A, Holtz, PO, Uvdal, K, Ojam盲e, L, Kall, PO (2009) ZnO nanoparticles functionalized with organic acids: an experimental and quantum-chemical study. J Phys Chem C 113: pp. 17332-17341 CrossRef
    10. Teklemichael, ST, McCluskey, MD (2012) Compensation of acceptors in ZnO nanocrystals by adsorption of formic acid. J Phys Chem C 116: pp. 17248-17251 CrossRef
    11. Hayden, BE, King, A, Newton, MA (1999) Fourier transform reflection-absorption IR spectroscopy study of formate adsorption on TiO2(110). J Phys Chem B 103: pp. 203-208 CrossRef
    12. Mattsson, A, Hu, S, Hermansson, K, 脰sterlund, L (2014) Adsorption of formic acid on rutile TiO2 (110) revisited: an infrared reflection-absorption spectroscopy and density functional theory study. J Chem Phys 140: pp. 034705 CrossRef
    13. Nakatsuji, H, Yoshimoto, M, Umemura, Y, Takagi, S, Hada, M (1996) Theoretical study of the chemisorption and surface reaction of HCOOH on a ZnO(10-10) surface. J Phys Chem 100: pp. 694-700 CrossRef
    14. Persson, P, Ojamae, L (2000) Periodic Hartree鈥揊ock study of the adsorption of formic acid on ZnO(10-10). Chem Phys Lett 321: pp. 302-308 CrossRef
    15. Persson, P, Lunell, S, Ojamae, L (2002) Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(10-10) surfaces. Int J Quantum Chem 89: pp. 172-180 CrossRef
    16. Xu, MC, Noei, H, Buchholz, M, Muhler, M, W枚ll, C, Wang, YM (2012) Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy. Catal Today 182: pp. 12-15 CrossRef
    17. Freund, HJ, Kuhlenbeck, H, Libuda, J, Rupprechter, G, B盲umer, M, Hamann, H (2001) Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top Catal 15: pp. 201-209 CrossRef
    18. Wang, Y, Kov谩膷ik, R, Meyer, B, Kotsis, K, Stodt, D, Staemmler, V, Qiu, H, Traeger, F, Langenberg, D, Muhler, M, W枚ll, C (2007) CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angew Chem Int Ed 46: pp. 5624-5627 CrossRef
    19. Buchholz, M, Weidler, PG, Bebensee, F, Nefedov, A, W枚ll, C (2014) Carbon dioxide adsorption on a ZnO (10-10) substrate studied by infrared reflection absorption spectroscopy. Phys Chem Chem Phys 16: pp. 1672-1678 CrossRef
    20. Greenler, RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44: pp. 310-315 CrossRef
    21. Greenler, RG, Snider, DR, Witt, D, Sorbello, RS (1982) The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf Sci 118: pp. 415-428 CrossRef
    22. W枚ll, C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82: pp. 55-120 CrossRef
    23. Wang, Y, Glenz, A, Muhler, M, W枚ll, C (2009) A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Rev Sci Instrum 80: pp. 113106-113108 CrossRef
    24. Kresse, G, Furthm眉ller, J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54: pp. 11169-11186 CrossRef
    25. Kresse, G, Furthm眉ller, J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6: pp. 15-50 CrossRef
    26. Kresse, G, Hafner, J (1993) Ab-Initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48: pp. 13115-13118 CrossRef
    27. Perdew, JP, Wang, Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45: pp. 13244-13249 CrossRef
    28. Bl枚chl, PE (1994) Projector augmented-wave method. Phys Rev B 50: pp. 17953-17979 CrossRef
    29. Meyer, B, Marx, D (2003) Density-functional study of the structure and stability of ZnO surfaces. Phys Rev B 67: pp. 035403 CrossRef
    30. Karzel, H, Potzel, W, Kofferlein, M, Schiessl, W, Steiner, M, Hiller, U, Kalvius, GM, Mitchell, DW, Das, TP, Blaha, P, Schwarz, K, Pasternak, MP (1996) Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys Rev B 53: pp. 11425-11438 CrossRef
    31. Duke, CB, Meyer, RJ, Paton, A, Mark, P (1978) Calculation of low-energy-electron-diffraction intensities from ZnO (1010).2. Influence of calculational procedure, model potential, and 2nd-layer structural distortions. Phys Rev B 18: pp. 4225-4240 CrossRef
    32. Monkhorst, HJ, Pack, JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: pp. 5188-5192 CrossRef
    33. Baroni, S, Gironcoli, S, Dal Corso, A, Giannozzi, P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73: pp. 515-562 CrossRef
    34. Pick, RM, Cohen, MH, Martin, RM (1970) Microscopic theory of force constants in adiabatic approximation. Phys Rev B 1: pp. 910-920 CrossRef
    35. Gonze, X, Lee, C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55: pp. 10355-10368 CrossRef
    36. Karhanek, D, Bucko, T, Hafner, J (2010) A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II.Vibrational spectroscopy. J Phys Condens Matter 22: pp. 265006 CrossRef
    37. Noei H (2010) Vibrational spectroscopic Studies on Adsorption and Reactions over ZnO鈥攂ased Catalysts. Dissertation, Ruhr-Universit盲t Bochum, Bochum
    38. K盲hler, K, Holz, MC, Rohe, M, Strunk, J, Muhler, M (2010) Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study. ChemPhysChem 11: pp. 2521-2529 CrossRef
    39. Busca, G, Lorenzelli, V (1982) Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem 7: pp. 89-126 CrossRef
    40. Nakamoto, K (2008) Applications in coordination chemistry. Infrared and Raman spectra of inorganic and coordination compounds. Wiley, Hoboken CrossRef
    41. Petrie, WT, Vohs, JM (1991) An HREELS investigation of the adsorption and reaction of formic acid on the (0001)-Zn surface of ZnO. Surf Sci 245: pp. 315-323 CrossRef
    42. Ko脽mann J, Ro脽m眉ller G, H盲ttig C (2012) Prediction of vibrational frequencies of possible intermediates and side products of the methanol synthesis on ZnO(000 \(\overline{1}\) ) by ab initio calculations. The Journal of Chemical Physics 136 (3):034706
  • 刊物主题:Catalysis; Physical Chemistry; Pharmacy; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1572-9028
文摘
We present azimuth- and polarization-dependent infrared spectroscopy results obtained under ultra-high vacuum conditions on surface species formed by the interaction of formic acid with the mixed-terminated ZnO(10 \(\bar{1}\) 0) surface. Since there are no previous IRRAS data for formic-acid derived species on any ZnO single crystal surfaces, we have carried out calculations using density function theory to aid the interpretation of the results. From our combined experimental and theoretical data we conclude that two different formate species are formed. The more strongly bound species is a bidentate with the formate molecular plane oriented along the [1 \(\bar{2}\) 10] direction. The less strongly bound species is a quasi-bidentate with its molecular plane oriented along the [0001] direction. This second species is characterized by a strong hydrogen bond between a surface OH species and the formate. In addition, IR data were recorded for the same molecule adsorbed on commercial ZnO nanoparticles. The different bands of the powder IR-data are assigned on the basis of the experimental and theoretical results obtained for the single crystal surface. This study demonstrates the importance of the Surface Science approach to heterogeneous catalysis also for ZnO, an important catalyst for the conversion of syngas to methanol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700