Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear
详细信息    查看全文
  • 作者:Igor Velkavrh ; Fevzi Kafexhiu ; Stefan Klien…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:48
  • 期:1
  • 页码:109-125
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology;
  • 出版者:Springer US
  • ISSN:1543-1940
  • 卷排序:48
文摘
Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700