Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells
详细信息    查看全文
  • 作者:Nada Kraguljac Kurtovi? (2)
    Milena Krajnovi? (1)
    Andrija Bogdanovi? (2) (3)
    Nada Suvajd?i? (2) (3)
    Jelica Jovanovi? (2)
    Bogomir Dimitrijevi? (1)
    Milica ?olovi? (2) (3)
    Koviljka Krtolica (1)
  • 关键词:Acute myeloid leukemia ; Methylation profile ; p15 INK4B ; MGMT ; Immunophenotype
  • 刊名:Medical Oncology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:29
  • 期:5
  • 页码:3547-3556
  • 全文大小:346KB
  • 参考文献:1. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225-.
    2. Rush LJ, Plass C. Alterations of DNA methylation in hematologic malignancies. Cancer Lett. 2002;185:1-2. CrossRef
    3. Esteller M. Profiling aberrant methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol. 2003;109:80-. CrossRef
    4. Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 2006;29:1-3. CrossRef
    5. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138:3-1. CrossRef
    6. Schoofs T, Müler-Tidow C. DNA methylation as a pathogenic event and as a therapeutic target in AML. Cancer Treat Rev. 2011;37:S13-. CrossRef
    7. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59:3730-0.
    8. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JPJ. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823-. CrossRef
    9. Galm O, Wilop S, Luders C, Jost E, Gehbauer G, Herman JG, Osieka R. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol. 2005;84:39-6. CrossRef
    10. Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of p15INK4b and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leukemia Res. 2005;29:653-. CrossRef
    11. Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B1. Cancer Res. 1996;56:722-.
    12. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501-2. CrossRef
    13. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberf AP, Cui H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451:202-. CrossRef
    14. Visser KE, Kast WM. Effects of TGF-β on the immune system: implications for early detection and prevention. Lancet Oncol. 2002;3:755-3. CrossRef
    15. Paz MF, Fraga MF, Avila S, Guo M, Pollan M, Herman JG, Esteller M. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 2003;63:1114-1.
    16. Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol. 2002;9:2388-9. CrossRef
    17. Margison GP, Povey AC, Kaina B, Santibanez-Koref MF. Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis. 2003;24:625-5. CrossRef
    18. Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltrasferase in human cancer. Oncogene. 2004;23:1-. CrossRef
    19. Bogdanovi? G, Juri?i? V, Kraguljac N, Mrdjanovi? J, Jakimov P, Krtolica K, Krajnovi? M, Magi? Z, Stojiljkovi? B, Andrijevi? LJ, Srdi? T, Balti? M, Popovi? S. Characteristics of novel myeloid precursor cell line, PC-MDS, established from a bone marrow of the patient with therapy—related myelodysplastic syndrome. Leukemia Res. 2007;31:1105-3.
    20. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793-.
    21. Esteller M, Gaidano G, Goodman SN, Zagonel V, Capello D, Botto B, Rossi D, Gloghini A, Vitolo U, Carbone A, Baylin SB, Herman JG. Hypermethylation of the DNA repair gene O6-methylguanine-DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Nat Cancer Inst. 2002;94:26-2. CrossRef
    22. Kraguljac Kurtovi? N, Krajnovi? M, Dimitrijevi? B, Mihaljevi? B, Goti? M, Krtolica K. Frequency of aberrant promoter methylation of p15INK4B and O6-methylguanine-DNA methyltransferase genes in B-cell non-Hodgkin lymphoma: a pilot study. Arch Biol Sci. 2010;62:211-1. CrossRef
    23. Lenz G, Hutter G, Hiddemann W, Dreyling M. Promoter methylation and expression of DNA repair genes hMLH1 and MGMT in acute myeloid leukemia. Ann Hematol. 2004;83:628-3.
    24. Chim CS, Kwong YL. Adverse prognostic impact of CDKN2B hyper-methylation in acute promyelocytic leukemia. Leuk Lymphoma. 2006;47:815-5. CrossRef
    25. Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2001.
    26. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.
    27. Hann IM, Stevens RF, Goldstone AH, Rees JK, Wheatley K, Gray RG, Burnett AK. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood. 1997;89:2311-.
    28. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biond A, Hiddemann W, Larson RA, L?wenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21:4642-. CrossRef
    29. Boyum A. Separation of leucocytes from blood and bone marrow. Scand J Clin Lab Invest. 1968;21(Suppl 97):77-9.
    30. Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Leukemia. 1996;10:877-5.
    31. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussic SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda international consensus recommendation on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytom B Clin Cytom. 2007;72(Suppl 1):S14-2. CrossRef
    32. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van’t Veer MB, European Group for the Immunological Characterization of Leukaemias (EGIL). Proposals for the immunological classification of acute leukemias. Leukemia. 1995;9:1783-.
    33. Bene MC, Bernier M, Casasnovas RO, Castoldi G, Knapp W, Lanza Ludwig WD, Matutes E, Orfao A, Sperling C, van’t Veer MB, European Group for the Immunological Characterization of Leukaemias (EGIL). The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. Blood. 1998;92:596-.
    34. Novak A, Kru?ki? M, Ludo?ki M, Jurukovski V. Rapid method for obtaining high-quality chromosome banding in the study of hematopoietic neoplasia. Cancer Genet Cytogenet. 1994;74:109-4. CrossRef
    35. Shaffer LG, Tommerup N, editors. ISCN 2005: an international system for human cytogenetic nomenclature. Basel: S. Karger; 2005.
    36. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council adult and children’s leukaemia working parties. Blood. 1998;92:2322-3.
    37. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
    38. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821-. CrossRef
    39. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucl Acids Res. 2001;29:e65. CrossRef
    40. Krtolica K, Krajnovi? M, U?aj-Kne?evi? S, Babi? D, Jovanovi? D, Dimitrijevi? B. Comethylation of p16 and MGMT genes in colorectal carcinoma: correlation with clinicopathological features and prognostic value. World J Gastroenterol. 2007;13:1187-4.
    41. Mikeska T, Candiloro ILM, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics. 2010;2:561-3. CrossRef
    42. Herman JG, Civin CI, Issa JPJ, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4a characterize the major types of hematological malignancies. Cancer Res. 1997;57:837-1.
    43. Cameron EE, Baylin SB, Herman JG. p15INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood. 1999;94:2445-1.
    44. Griffiths EA, Gore SD, Hooker CM, Mohammad HP, McDevitt MA, Smith BD, Karp JE, Herman JG, Carraway HE. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics. 2010;5:590-00. CrossRef
    45. Jordan CT. Unique molecular and cellular features of acute myelogenous leukemia stem cells. Leukemia. 2002;16:559-2. CrossRef
    46. Asou N, Adachi K, Tamura J, Kanamaru A, Kageyama S, Hiraoka A, Omoto E, Akiyama H, Tsubaki H, Saito K, Kuriyama K, Oh H, Kitano K, Miyawaki S, Takeyama K, Yamada O, Nishikawa K, Takahashi M, Matsuda S, Ohtake S, Suzushima H, Emi N, Ohno R. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. J Clin Oncol. 1998;16:78-5.
    47. Tien HF, Tang JL, Tsay W, Liu MC, Lee FY, Wang CH, Chen YC, Shen MC. Methylation of the p15INK4B gene in myelodisplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukemic transformation. Br J Haematol. 2001;112:148-4. CrossRef
    48. Au WY, Fung A, Man C, Ma SK, Wan TS, Liang R, Kwong YL. Aberrant p15 gene promoter methylation in therapy-related myelodysplastic syndrome and acute myeloid leukaemia: clinicopathological and karyotypic associations. Br J Haematol. 2003;120:1062-. CrossRef
    49. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, Kawamoto H. Adult T-cell progenitors retain myeloid potential. Nature. 2008;451:768-2. CrossRef
    50. Tien HF, Wang CH. CD7 Positive hematopoietic progenitors and acute myeloid leukemia and other minimally differentiated leukemia. Leuk Lymphoma. 1998;31:93-. CrossRef
    51. Ogata K, Yokose N, Shioi Y, Ishida Y, Tomiyama J, Hamaguchi H, Yagasaki F, Bessyo M, Sakamki H, Dan K, Kuriya S. Reappraisal of the clinical significance of CD7 expression in association with cytogenetics in de novo acute myeloid leukaemia. Br J Haematol. 2001;115:612-. CrossRef
    52. Venditti A, Del Poeta G, Buccisano F, Tamburini A, Cox-Fronccilo MC, Aronica G, Bruno A, Del Moro B, Epiceno AM, Battaglia A, Forte L, Postorino M, Cordero V, Santinelli S, Amadori S. Prognostic relevance of the expression of TdT and CD7 in 335 cases of acute myeloid leukemia. Leukemia. 1998;12:1056-3. CrossRef
    53. Sangfelt O, Erickson S, Heiden CJ, Gustafsson A, Einhorn S, Grander D. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins. Oncogene. 1999;18:2798-10. CrossRef
    54. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501-2. CrossRef
    55. Visser KE, Kast WM. Effects of TGF-β on the immune system: implications for cancer immunotherapy. Leukemia. 1999;13:1188-9. CrossRef
    56. Brandwein JM, Yang L, Schimmer AD, Schuh AC, Gupta V, Wells RA, Alibhai SMH, Xu W, Minden MD. A phase II study of temozolomide therapy for poor-risk patients aged??0?years with acute myeloid leukemia: low levels of MGMT predict for response. Leukemia. 2007;21:821-.
  • 作者单位:Nada Kraguljac Kurtovi? (2)
    Milena Krajnovi? (1)
    Andrija Bogdanovi? (2) (3)
    Nada Suvajd?i? (2) (3)
    Jelica Jovanovi? (2)
    Bogomir Dimitrijevi? (1)
    Milica ?olovi? (2) (3)
    Koviljka Krtolica (1)

    2. Clinic of Hematology, Clinical Center of Serbia, 11000, Belgrade, Serbia
    1. Institute for Nuclear Sciences “Vin?a- University of Belgrade, 11000, Belgrade, Serbia
    3. School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
文摘
In this study, methylation-specific polymerase chain reaction (MS-PCR) was used to define the methylation status of the target promoter sequences of p15 and MGMT genes in the group of 21 adult patients with acute myeloid leukemia (AML). The incidence of aberrant hypermethylation of p15 gene (71?%) was higher comparing to MGMT gene (33?%), whereas concomitant methylation of both genes had 24?% of the patients. Although the incidence of cytogenetic abnormalities between the groups with a different methylation status of p15 and/or MGMT genes was not significantly different, we observed general trend of clustering of abnormalities with adverse prognosis into groups with concomitant hypermethylation of both genes and only p15 gene. Also, we showed that AML patients with concomitant methylation of p15/MGMT genes had a higher proportion of leukemic blast cells characterized with specific expression of individual leukocyte surface antigens (CD117+/CD7+/CD34+/CD15?/sup>), indicating leukemic cells as early myeloid progenitors. Although we could not prove that hypermethylation of p15 and/or MGMT genes is predictive parameter for response to therapy and overall survival, we noticed that AML patients with comethylated p15/MGMT genes or methylated p15 gene exhibited a higher frequency of early death, lower frequency of complete remissions as well as a trend for shorter overall survival. Assessing of the methylation status of p15 and MGMT genes may allow stratification of patients with AML into distinct groups with potentially different prognosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700