Design, Synthesis and pH Sensing Properties of Novel PAMAM Light-Harvesting Dendrons Based on Rhodamine 6G and 1,8-naphthalimide
详细信息    查看全文
  • 作者:Nikolai I. Georgiev (1)
    Vladimir B. Bojinov (1)
    Alexandrina I. Venkova (1)
  • 关键词:1 ; 8 ; Naphthalimide ; Rhodamine 6G ; PAMAM dendrimers ; Fluorescence ; Light harvesting ; FRET ; pH sensing
  • 刊名:Journal of Fluorescence
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:23
  • 期:3
  • 页码:459-471
  • 全文大小:936KB
  • 参考文献:1. Jiang J, Leng B, Xiao X, Zhao P, Tian H (2009) “Off-On-Off-fluorescent proton switch synthesized by RAFT polymerization. Polymer 50:5681-684 CrossRef
    2. Qian J, Xu Y, Qian X, Zhang S (2009) A pair of regio-isomeric compounds acting as molecular logic gates with different functions. J Photochem Photobiol A Chem 207:181-89 CrossRef
    3. Marinova N, Bojinov V, Georgiev N (2011) Design, synthesis and pH sensing properties of novel 1,8-naphtalimide-based bichromophoric system. J Photochem Photobiol A Chem 222:132-40 CrossRef
    4. Badugu R, Lakowicz J, Geddes C (2005) Cyanide-sensitive fluorescent probes. Dyes Pigment 64:49-5 CrossRef
    5. Cho D-G, Sessler J (2009) Modern reaction-based indicator systems. Chem Soc Rev 38:1647-662 CrossRef
    6. Jun M, Roy B, Ahn K (2011) “Turn-on”-fluorescent sensing with “reactive-probes. Chem Commun 47:7583-601 CrossRef
    7. Xu Z, Pan J, Spring D, Cui J, Yoon J (2010) Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+displacement approach. Tetrahedron 66:1678-683 CrossRef
    8. Dai H, Xu H (2011) A water-soluble 1,8-naphthalimide-based “turn on-fluorescent chemosensor for selective and sensitive recognition of mercury ion in water. Bioorg Med Chem Lett 21:5141-144 CrossRef
    9. Kim H, Guo Z, Zhu W, Yoon J, Tian H (2011) Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev 40:79-3 CrossRef
    10. Parkesh R, Lee T, Gunnlaugsson T (2007) Highly selective 4-amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Org Biomol Chem 5:310-17 CrossRef
    11. Duke R, Gunnlaugsson T (2007) Selective fluorescent PET sensing of fluoride (F?/sup>) using naphthalimide-thiourea and -urea conjugates. Tetrahedron Lett 48:8043-047 CrossRef
    12. Tal S, Salman H, Abraham Y, Botoshansky M, Eichen Y (2006) Sensitive and selective photoinduced-electron-transfer-based sensing of alkylating agents. Chem Eur J 12:4858-864 CrossRef
    13. Dale J, Rebek J (2006) Fluorescent sensors for organophosphorus nerve agent mimics. J Am Chem Soc 128:4500-501 CrossRef
    14. Zhang S, Swager T (2003) Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors. J Am Chem Soc 125:3420-421 CrossRef
    15. Chen G, Wang L, Zhang J, Chen F, Anpo M (2009) Photophysical properties of a naphthalimide derivative encapsulated within Si-MCM-41, Ce-MCM-41 and Al-MCM-41. Dyes Pigments 81:119-23 CrossRef
    16. Parkesh R, Lee T, Gunnlaugsson T (2009) Fluorescence imaging of bone cracks (microdamage) using visibly emitting 1,8-naphthalimide-based PET sensors. Tetrahedron Lett 50:4114-116 CrossRef
    17. Gunnlaugsson T, Kruger P, Jensen P, Pfeffer F, Hussey G (2003) Simple naphthalimide based anion sensors: deprotonation induced colour changes and CO2 fixation. Tetrahedron Lett 44:8909-913 CrossRef
    18. Kaur P, Kaur S, Singh K (2011) A fluoride selective dipyrromethane-TCNQ colorimetric sensor based on charge-transfer. Talanta 84:947-51 CrossRef
    19. Fabbrizzi L, Licchelli M, Pallavicini P, Perotti A, Taglietti A, Sacchi D (1996) Fluorescent sensors for transition metals based on electron-transfer and energy-eransfer mechanisms. Chem Eur J 2:75-2 CrossRef
    20. Kim J, Morozumi T, Kurumatani N, Nakamura H (2008) Novel chemosensor for alkaline earth metal ion based on 9-anthryl aromatic amide using a naphthalene as a TICT control site and intramolecular energy transfer donor. Tetrahedron Lett 49:1984-987 CrossRef
    21. Sasaki H, Hanaoka K, Urano Y, Terai T, Nagano T (2011) Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives. Bioorg Med Chem 19:1072-078 CrossRef
    22. Chen X, Pradhan T, Wang F, Kim J, Yoon J (2011) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 1910-1956
    23. Liu Y, Lv X, Zhao Y, Chen M, Liu J, Wang P, Guo W (2012) A naphthalimide-rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer. Dyes Pigments 92:909-15 CrossRef
    24. Valeur B (2002) Molecular fluorescence principles and applications. WILEY-VCH Verlag GmbH, Weinheim
    25. Demchenko A (2009) Introduction to fluorescence sensing, Springer Science + Business Media B.V.
    26. Sun Y, Wei S, Yin C, La Liu H, Ci ZY, Ye Y, Hu X, Fan J (2011) Synthesis and spectroscopic characterisation of 4-butoxyethoxy-N-octadecyl-1,8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg Med Chem Lett 21:3798-804 CrossRef
    27. Wang H, Yang L, Zhang W, Zhou Y, Zhao B, Li X (2012) A colorimetric probe for copper(II) ion based on 4-amino-1,8-naphthalimide. Inorg Chim Acta 381:111-16 CrossRef
    28. Xie J, Chen Y, Yang W, Xu D, Zhang K (2011) Water soluble 1,8-naphthalimide fluorescent pH probes and their application to bioimagings. J Photochem Photobiol A: Chem 223:111-18 CrossRef
    29. Xiao H, Li H, Chen M, Wang L (2009) A water-soluble D-π-A chromophore based on dipicolinic acid: synthesis, pH-dependent spectral properties and two-photon fluorescence cell imaging. Dyes Pigments 83:334-38 CrossRef
    30. Dong M, Ma T-H, Zhang A-J, Dong Y-M, Wang Y-W, Peng Y (2010) A series of highly sensitive and selective fluorescent and colorimetric “off-on-chemosensors for Cu (II) based on rhodamine derivatives. Dyes Pigments 87:164-72 CrossRef
    31. Mab Q-J, Zhang X-B, Zhao X-H, Jin Z, G-Ji M, Shen G-L, Yu R-Q (2010) A highly selective fluorescent probe for Hg2+ based on a rhodamine-coumarin conjugate. Anal Chim Acta 663:85-0 CrossRef
    32. Ahamed B, Ghosh P (2011) An integrated system of pyrene and rhodamine-6G for selective colorimetric and fluorometric sensing of mercury(II). Inorg Chim Acta 372:100-07 CrossRef
    33. Bojinov V, Venkova A, Georgiev N (2009) Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1,8-naphthalimide. Sens Actuators B 143:42-9 CrossRef
    34. Adronov A, Gilat S, Frèchet J, Ohta K, Neuwahl F, Fleming G (2000) Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers. J Am Chem Soc 122:1175-185 CrossRef
    35. Serin J, Brousmiche D, Frèchet J (2002) Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun 2605-607
    36. Du P, Zhu W-H, Xie Y-Q, Zhao F, Ku C-F, Cao Y, Chang C-P, Tian H (2004) Dendron-functionalized macromolecules: enhancing core luminescence and tuning carrier injection. Macromolecules 37:4387-398 CrossRef
    37. Mètivier R, Kulzer F, Weil T, Müllen K, Basch T (2004) Energy transfer rates and pathways of single donor chromophores in a multichromophoric dendrimer built around a central acceptor core. J Am Chem Soc 126:14364-4365 CrossRef
    38. Thomas K, Thompson A, Sivakumar A, Bardeen C, Thayumanavan S (2005) Energy and electron transfer in bifunctional non-conjugated dendrimers. J Am Chem Soc 127:373-83 CrossRef
    39. Nantalaksakul A, Reddy D, Bardeen C, Thayumanavan S (2006) Light harvesting dendrimers. Photosynth Res 87:133-50 CrossRef
    40. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26-8 CrossRef
    41. Li W-S, Teng M-J, Jia X-R, Wang B-B, Yeh J-M, Wei Y (2008) Synthesis and energy-transfer properties of poly(amidoamine) dendrons modified with naphthyl and dansyl groups. Tetrahedron Lett 49:1988-992 CrossRef
    42. Georgiev N, Bojinov V, Nikolov P (2009) Design and synthesis of a novel pH sensitive core and peripherally 1,8-naphthalimide-labeled PAMAM dendron as light harvesting antenna. Dyes Pigments 81:18-6 CrossRef
    43. Georgiev N, Bojinov V (2011) Design, synthesis and photostability of novel 1,8-naphthalimide PAMAM Light-harvesting dendrons. J Fluoresc 21:51-3 CrossRef
    44. Lei Y, Su Y, Huo J (2011) Photophysical property of rhodamine-cored poly(amidoamine) dendrimers: simultaneous effect of spirolactam ring-opening and PET process on sensing trivalent chromium ion. J Lumin 131:2521-527 CrossRef
    45. Grabchev I, Moneva I, Bojinov V, Guittonneau S (2000) Synthesis and properties of fluorescent 1,8-naphthalimide dyes for application in liquid crystal displays. J Mater Chem 10:1291-296 CrossRef
    46. Kubin R, Fletcher A (1982) A Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455-62 CrossRef
    47. Reynolds G, Drexhage K (1975) New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Optics Commun 13:222-25 CrossRef
    48. Niu C, Zeng G, Chen L, Shena G, Yu R (2004) Proton “off-on-behaviour of methylpiperazinyl derivative of naphthalimide: a pH sensor based on fluorescence enhancement. Analyst 129:20-4 CrossRef
    49. Nisar B, Ghosh P (2011) An integrated system of pyrene and rhodamine-6G for selective colorimetric sensing of mercury (II). Inorg Chim Acta 372:100-07 CrossRef
    50. Bojinov V, Panova I (2007) Synthesis and absorption properties of new yellow-green emitting benzo[de]isoquinoline-1,3-diones containing hindered amine and 2-hydroxyphenylbenzotriazole fragments. Dyes Pigments 74:551-60 CrossRef
    51. Bakkialakshmi S, Menaka T (2011) A study of the interaction between rhodamine 6G and hydroxy propyl β-cyclodextrin by steady state fluorescence. Spectrochim Acta Part A 81:8-3 CrossRef
    52. Zakerhamidi M, Moghadam M, Ghanadzadeh A, Hosseini S (2012) Anisotropic and isotropic solvent effects on the dipole moment and photophysical properties of rhodamine dyes. J Lumin 132:931-37 CrossRef
    53. Bojinov V, Georgiev N, Nikolov P (2008) Design and synthesis of core and peripherally functionalized with 1,8-naphthalimide units fluorescent PAMAM dendron as light harvesting antenna. J Photochem Photobiol A Chem 197:281-89 CrossRef
    54. Georgiev N, Sakr A, Bojinov V (2011) Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer. Dyes Pigments 91:332-39 CrossRef
    55. Mao M, Song Q-H (2012) Non-conjugated dendrimers with a porphyrin core and coumarin chromophores as peripheral units: Synthesis and photophysical properties. Dyes Pigments 92:975-81 CrossRef
    56. Daffy L, de Silva A, Gunaratne H, Huber C, Lynch P, Werner T, Wolfbeis O (1998) Arenedicarboximide building blocks for fluorescent photoinduced electron transfer pH sensors applicable with different media and communication wavelengths. Chem Eur J 4:1810-815 CrossRef
    57. Lee I, Athey B, Wetzel A, Meixner W, Baker J (2002) Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: effects of pH and generation. Macromolecules 35:4510-520 CrossRef
    58. Cakara D, Kleimann J, Borkovec M (2003) Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: effects of pH and generation. Macromolecules 36:4201-207 CrossRef
  • 作者单位:Nikolai I. Georgiev (1)
    Vladimir B. Bojinov (1)
    Alexandrina I. Venkova (1)

    1. Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Bulv., 1756, Sofia, Bulgaria
  • ISSN:1573-4994
文摘
Herein we report on the design, divergent synthesis and photophysical behavior of novel PAMAM light-harvesting dendrons from first and second generation. The surface of novel compounds is labeled with 4-alkylamino-1,8-naphthalimide yellow-green emitting “donor-fluorophores capable of absorbing light and efficiently transferring the energy to a single rhodamine “acceptor-dye. Due to the pH dependent rhodamine absorption the novel systems show “off-on-switching energy transfer mechanism from alkaline to acid media. The results obtained illustrate the high potential of the synthesized wavelength-shifting fluorophores as efficient pH chemosensing materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700