Two relaxation time lattice Boltzmann equation for high Knudsen number flows using wall function approach
详细信息    查看全文
  • 作者:Ali Norouzi ; Javad Abolfazli Esfahani
  • 关键词:Two relaxation time ; Lattice Boltzmann equation ; Wall function ; Transition flow
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:18
  • 期:2
  • 页码:323-332
  • 全文大小:849 KB
  • 参考文献:1. Akhlaghi H, Balaj M, Roohi E (2013) Hydrodynamic behaviour of micro/nanoscale Poiseuille flow under thermal creep condition. Appl Phys Lett 103(7):073108 CrossRef
    2. Chen S, Tian Z (2009) Simulation of microchannel flow using the lattice Boltzmann method. Phys A 388(23):4803-810. doi:10.1016/j.physa.2009.08.015 CrossRef
    3. Dongari N, Zhang Y, Reese JM (2011) Modeling of Knudsen layer effects in micro/nanoscale gas flows. Trans ASME-I J Fluids Eng 133(7):071101 CrossRef
    4. Dongari N, Barber RW, Emerson DR, Stefanov SK, Zhang Y, Reese JM (2013a) The effect of Knudsen layers on rarefied cylindrical Couette gas flows. Microfluid Nanofluid 14(1-):31-3 CrossRef
    5. Dongari N, White C, Scanlon TJ, Zhang Y, Reese JM (2013b) Effects of curvature on rarefied gas flows between rotating concentric cylinders. Phys Fluids (1994-present) 25(5):052003 CrossRef
    6. Esfahani JA, Norouzi A (2014) Two relaxation time lattice Boltzmann model for rarefied gas flows. Phys A 393:51-1. doi:10.1016/j.physa.2013.08.058 CrossRef
    7. Ginzburg I (2005) Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour 28(11):1171-195 CrossRef
    8. Guo Z, Shu C (2013) Lattice Boltzmann method and its-applications in engineering. World Scientific Publishing Company Incorporated, Singapore CrossRef
    9. Guo Z, Shi B, Zheng CG (2007) An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall. EPL Europhys Lett 80(2):24001 CrossRef
    10. Guo Z, Zheng C, Shi B (2008) Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys Rev E Stat Nonlin Soft Matter Phys 77(3 Pt 2):036707 CrossRef
    11. He X, Luo L-S, Dembo M (1996) Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids. J Comput Phys 129(2):357-63 CrossRef
    12. Kandlikar SG (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Amsterdam
    13. Karniadakis GE, Beskok A, Aluru NR (2005) Microflows and nanoflows, vol 29. Springer, New York
    14. Kim SH, Pitsch H, Boyd ID (2008) Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers. J Comput Phys 227(19):8655-671 CrossRef
    15. Lim C, Shu C, Niu X, Chew Y (2002) Application of lattice Boltzmann method to simulate microchannel flows. Phys Fluids 14:2299 CrossRef
    16. Liu X, Guo Z (2013) A lattice Boltzmann study of gas flows in a long micro-channel. Comput Math Appl 65(2):186-93. doi:10.1016/j.camwa.2011.01.035 CrossRef
    17. Lockerby DA, Reese JM, Gallis MA (2005) The usefulness of higher-order constitutive relations for describing the Knudsen layer. Phys Fluids 17:100609 CrossRef
    18. Lopez P, Bayazitoglu Y (2013) High Knudsen number thermal flows with the D2Q13 lattice Boltzmann model. Numer Heat Transf Part A Appl 64(2):93-06 CrossRef
    19. Meng J, Zhan
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
In the present study, we investigate gas flow in a micro-/nanochannel by using the two relaxation time lattice Boltzmann equation (TRT-LBE). The wall function approach is employed in order to consider the effect of Knudsen layer in transition flow regime. In this context, two different wall functions called power law and exponential functions are applied to pressure-driven gas flow through a micro-/nanochannel. Also, the slip velocity is realized by defining a relation between the relaxation times of the model. The advantage of the present approach over previous slip boundary conditions is ease of implementation. The TRT-LBE used in this study is comparable with the single relaxation time?(SRT) model in simplicity and computational cost, but the additional relaxation time enables the model to treat the slip velocity more accurately. In the results section, we evaluate our model against direct simulation Monte Carlo?(DSMC), information preservation (IP) and linearized Boltzmann solution. The accuracy of power law and exponential functions in prediction of velocity profiles, pressure distribution and mass flow rate is also investigated. The results show that the TRT-LBE using wall function correction can satisfactorily predict the flow behavior up to the upper end of the transition flow regime.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700