A pore-scale model for microfibrous ammonia cracking microreactors via lattice Boltzmann method
详细信息    查看全文
  • 作者:Gholam Reza Molaeimanesh…
  • 关键词:Ammonia Cracking Microreactor ; Lattice Boltzmann Method ; Pore ; scale Model ; Microfibrous Microreactor ; Post Microreactor
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:33
  • 期:4
  • 页码:1211-1219
  • 全文大小:1,197 KB
  • 参考文献:1.M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, Modern electric, hybrid electric and fuel cell vehicels, CRC Press, London (2012).
    2.J. Larminie and A. Dicks, Fuel cell systems explained, Wiley, Chichester (2003).CrossRef
    3.M. Wang, J. Li, L. Chen and Y. Lu, Int. J. Hydrogen Energy, 34, 1710 (2009).CrossRef
    4.O. Worz, K. P. Jackel, T. Richter and A. Wolf, Chem. Eng. Technol., 24, 138 (2001).CrossRef
    5.K. F. Jensen, Chem. Eng. Sci., 56, 293 (2001).CrossRef
    6.G. Kolb and V. Hessel, Chem. Eng. J., 98, 1 (2004).CrossRef
    7.M. Karakaya, S. Keskin and A. K. Avci, Appl. Catal. A, 411, 114 (2012).CrossRef
    8.J. J. Lerou, M. P. Harold, J. Ryley, J. Ashmead, T. C. O’Brien, M. Johnson, J. Perrotto, C. T. Blaisddell, T. A. Rensi and J. Nyquist, in Microsystem technology for chemical and biological microreactors, W. Ehrfield Eds., DECHEMA, New York (1996).
    9.S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van der Gryp and D. G. Bessarabov, Int. J. Hydrogen Energy, 38, 14968 (2013).CrossRef
    10.M. S. Shin, N. Park, M. J. Park, K. W. Jun and K. S. Ha, Chem. Eng. J., 234, 23 (2013).CrossRef
    11.M. S. Shin, N. Park, M. J. Park, J. Y. Cheon, J. K. Kanga, K. W. Jun and K. S. Ha, Fuel Process. Technol., 118, 235 (2014).CrossRef
    12.D. Y. Shin, K. S. Ha, M. J. Park, G. Kwak, Y. J. Lee and K. W. Jun, Fuel, 158, 826 (2015).CrossRef
    13.S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).CrossRef
    14.T. Zeiser, P. Lammers, E. Klemm, Y. W. Li, J. Bernsdorf and G. Brenner, Chem. Eng. Sci., 56, 1697 (2001).CrossRef
    15.H. Freund, T. Zeiser, F. Huber, E. Klemm, G. Brenner, F. Durst and G. Emig, Chem. Eng. Sci., 58, 903 (2003).CrossRef
    16.M. Nijemeisland and A. G. Dixon, AIChE J., 50, 906 (2004).CrossRef
    17.S. P. Sullivan, F. M. Sani, M. L. Johns and L. F. Gladden, Chem. Eng. Sci., 60, 3405 (2005).CrossRef
    18.N. Manjhi, N. Verma, K. Salem and D. Mewes, Chem. Eng. Sci., 61, 2510 (2006).CrossRef
    19.P. H. Kao, T. F. Ren and R. J. Yang, Int. J. Heat Mass Transfer, 50, 4243 (2007).CrossRef
    20.N. Verma, K. Salem and D. Mewes, Chem. Eng. Sci., 62, 3685 (2007).CrossRef
    21.L. Chen, Q. Kang, Y. L. He and W. Q. Tao, Int. J. Hydrogen Energy, 37, 13943 (2012).CrossRef
    22.M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg (2007).
    23.A. Satoh, Introduction to practice of molecular simulation, Elsevier Inc., Amsterdam (2011).
    24.P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 94, 511 (1954).CrossRef
    25.A. A. Mohamad, Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes, Springer, Heidelberg (2011).
    26.S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Numerical Mathematics And Scientific Computation, Clarendon Press, Oxford (2001).
    27.A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A, 43, 4320 (1991).CrossRef
    28.X. Shan and H. Chen, Phys. Rev. E, 47, 1815 (1993).CrossRef
    29.M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).CrossRef
    30.A. S. Chellappa, C. M. Fischer and W. J. Thomson, Appl. Catal. A, 227, 231 (2002).CrossRef
    31.M. R. Kamali, S. Sundaresan, H. E. A. Van den Akker and J. J. J. Gillissen, Chem. Eng. J., 207–208, 587 (2012).CrossRef
    32.G. R. Molaeimanesh and M. H. Akbari, J. Power Sources, 258, 89 (2014).CrossRef
    33.G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 32, 397 (2015).CrossRef
    34.Y. Liu, H. Wang, J. Li, Y. Lu, H. Wu, Q. Xue and L. Chen, Appl. Catal. A, 328, 77 (2007).CrossRef
    35.Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).CrossRef
  • 作者单位:Gholam Reza Molaeimanesh (1)
    Mohammad Hosein Sanati Davarani (1)

    1. Research Laboratory of Automotive Fluids and Structures Analysis, Automotive Engineering School, Iran University of Science and Technology, Tehran, 16846-13144, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
Microfibrous microreactors with high reactive surface-to-volume ratio are good choices for ammonia cracking, which is one of the main strategies for CO-free hydrogen production. In the current study, a numerical model based on the lattice Boltzmann method (LBM) is presented to investigate ammonia cracking microreactors with coupled physiochemical thermal processes at the pore scale. Several sets of transport phenomena such as fluid flow, species transport, heat transfer and chemical reaction are taken into account. Moreover, to model the species transport in the ammonia cracking microreactor an active approach is applied for the first time. The model is validated and then employed to simulate the reactive transport in five different microreactors with dissimilar structural parameters. Comparison of the results shows that the fibers orientation is an effective geometric parameter that can greatly influence the hydrogen production efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700