Development of a Simultaneous Cryo-Anchoring and Radiofrequency Ablation Catheter for Percutaneous Treatment of Mitral Valve Prolapse
详细信息    查看全文
  • 作者:Steven M. Boronyak (1)
    W. David Merryman (1) david.merryman@vanderbilt.edu
  • 关键词:Heart valve mechanics – ; Mitral valve prolapse – ; Radiofrequency ablation – ; Cryo ; ablation – ; Infrared thermal imaging
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:40
  • 期:9
  • 页码:1971-1981
  • 全文大小:808.3 KB
  • 参考文献:1. Aldous, I. G., S. P. Veres, A. Jahangir, and J. M. Lee. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am. J. Physiol. Heart Circ. Physiol. 296(6):H1898–H1906, 2009.
    2. Alfieri, O., M. De Bonis, E. Lapenna, T. Regesta, F. Maisano, L. Torracca, and G. La Canna. “Edge-to-edge” repair for anterior mitral leaflet prolapse. Semin. Thorac. Cardiovasc. Surg. 16(2):182–187, 2004.
    3. Alfieri, O., F. Maisano, and A. Colombo. Future of transcatheter repair of the mitral valve. Am. J. Cardiol. 96(12A):71L–75L, 2005.
    4. Chiam, P. T., and C. E. Ruiz. Percutaneous transcatheter mitral valve repair: a classification of the technology. JACC Cardiovasc. Interv. 4(1):1–13, 2011.
    5. Fedak, P. W., P. M. McCarthy, and R. O. Bonow. Evolving concepts and technologies in mitral valve repair. Circulation 117(7):963–974, 2008.
    6. Feldman, T., E. Foster, D. D. Glower, S. Kar, M. J. Rinaldi, P. S. Fail, R. W. Smalling, R. Siegel, G. A. Rose, E. Engeron, C. Loghin, A. Trento, E. R. Skipper, T. Fudge, G. V. Letsou, J. M. Massaro, and L. Mauri,. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364(15):1395–1406, 2011.
    7. Feldman, T., H. S. Wasserman, H. C. Herrmann, W. Gray, P. C. Block, P. Whitlow, F. St Goar, L. Rodriguez, F. Silvestry, A. Schwartz, T. A. Sanborn, J. A. Condado, and E. Foster. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial. J. Am. Coll. Cardiol. 46(11):2134–2140, 2005.
    8. Freed, L. A., D. Levy, R. A. Levine, M. G. Larson, J. C. Evans, D. L. Fuller, B. Lehman, and E. J. Benjamin. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 341(1):1–7, 1999.
    9. Fuster, V., and J. W. Hurst. Hurst’s the Heart. New York: McGraw-Hill, 2004.
    10. Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34(10):1509–1518, 2006.
    11. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.
    12. Huang, S. K. S., and M. A. Wood. Catheter Ablation of Cardiac Arrhythmias. Philadelphia: Elsevier, 2006.
    13. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.
    14. Khairy, P., A. Rodriguez-Santiago, and M. Talajic. Catheter cryoablation in man: early clinical experience. Can. J. Cardiol. 15(173D), 1999.
    15. Lim, C. B., R. D. Goldin, D. S. Elson, A. Darzi, and G. B. Hanna. In vivo thermography during small bowel fusion using radiofrequency energy. Surg. Endosc. 24(10):2465–2474, 2010.
    16. Lopez, M. J., L. A. DeTemple, Y. Lu, and M. D. Markel. The effects of monopolar radiofrequency energy on intact and lacerated ovine menisci. Arthroscopy 17(6):613–619, 2001.
    17. Lopez, M. J., K. Hayashi, G. S. Fanton, G. Thabit, and M. D. Markel. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen. Arthroscopy 14(5):495–501, 1998.
    18. Maisano, F., G. La Canna, A. Colombo, and O. Alfieri. The evolution from surgery to percutaneous mitral valve interventions: the role of the edge-to-edge technique. J. Am. Coll. Cardiol. 58(21):2174–2182, 2011.
    19. Naseef, 3rd, G. S., T. E. Foster, K. Trauner, S. Solhpour, R. R. Anderson, and B. Zarins. The thermal properties of bovine joint capsule. The basic science of laser- and radiofrequency-induced capsular shrinkage. Am. J. Sports Med. 25(5):670–674, 1997.
    20. Price, S., C. Norwood, J. Williams, H. McElderry, and W. D. Merryman. Radiofrequency ablation directionally alters geometry and biomechanical compliance of mitral valve leaflets: refinement of a novel percutaneous treatment strategy. Cardiovasc. Eng. Technol. 1(3):194–201, 2010.
    21. Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104(21):2525–2532, 2001.
    22. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.
    23. Skanes, A. C., G. Klein, A. Krahn, and R. Yee. Cryoablation: potentials and pitfalls. J. Cardiovasc. Electrophysiol. 15(10 Suppl):S28–S34, 2004.
    24. Victal, O. A., J. R. Teerlink, E. Gaxiola, A. W. Wallace, S. Najar, D. H. Camacho, A. Gutierrez, G. Herrera, G. Zuniga, F. Mercado-Rios, and M. B. Ratcliffe. Left ventricular volume reduction by radiofrequency heating of chronic myocardial infarction in patients with congestive heart failure. Circulation 105(11):1317–1322, 2002.
    25. Williams, J. L., Y. Toyoda, T. Ota, D. Gutkin, W. Katz, M. Zenati, and D. Schwartzman. Feasibility of myxomatous mitral valve repair using direct leaflet and chordal radiofrequency ablation. J. Interv. Cardiol. 21(6):547–554, 2008.
    26. Wood, M., S. Goldberg, M. Lau, A. Goel, D. Alexander, F. Han, and S. Feinstein. Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue. Circ. Arrhythm. Electrophysiol. 4(3):373–378, 2011.
  • 作者单位:1. Department of Biomedical Engineering, Vanderbilt University, Room 9445D MRB IV-Langford, 2213 Garland Avenue, Nashville, TN 37232-0493, USA
  • ISSN:1573-9686
文摘
Mitral valve prolapse (MVP) is one subtype of mitral valve (MV) disease and is often characterized by enlarged leaflets that are thickened and have disrupted collagen architecture. The increased surface area of myxomatous leaflets with MVP leads to mitral regurgitation, and there is need for percutaneous treatment options that avoid open-chest surgery. Radiofrequency (RF) ablation is one potential therapy in which resistive heating can be used to reduce leaflet size via collagen contracture. One challenge of using RF ablation to percutaneously treat MVP is maintaining contact between the RF ablation catheter tip and a functioning MV leaflet. To meet this challenge, we have developed a RF ablation catheter with a cryogenic anchor for attachment to leaflets in order to apply RF ablation. We demonstrate the effectiveness of the dual-energy catheter in vitro by examining changes in leaflet biaxial compliance, thermal distribution with infrared (IR) imaging, and cryogenic anchor strength. We report that 1250 J of RF energy with cryo-anchoring reduced the determinant of the deformation gradient tensor at systolic loading by 23%. IR imaging revealed distinct regions of cryo-anchoring and tissue ablation, demonstrating that the two modalities do not counteract one another. Finally, cryogenic anchor strength to the leaflet was reduced but still robust during the application of RF energy. These results indicate that a catheter having combined RF ablation and cryo-anchoring provides a novel percutaneous treatment strategy for MVP and may also be useful for other percutaneous procedures where anchored ablation would provide more precise spatial control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700