A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape
详细信息    查看全文
  • 作者:R. William Bouchard Jr. ; Scott Niemela…
  • 关键词:Tiered aquatic life uses ; Biological condition gradient ; Clean Water Act ; Biological integrity ; Aquatic ecosystems
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:188
  • 期:3
  • 全文大小:1,697 KB
  • 参考文献:Ballentine, R. K., & Guarraia, L. J. (Eds.). (1977). The integrity of water. Proceedings of a symposium, March 10–12, 1975. Washington: US Environmental Protection Agency.
    Berthouex, P., & Hau, I. (1991). Difficulties related to using extreme percentiles for water quality regulations. Research Journal of the Water Pollution Control Federation, 63(6), 873–879.
    Courtemanch, D. L. (1996). Commentary in the subsampling procedures used for rapid bioassessments. Journal of the North American Benthological Society, 15(3), 381–385.CrossRef
    Courtemanch, D. L., Davies, S. P., & Laverty, E. B. (1989). Incorporation of biological information in water quality planning. Environmental Management, 13(1), 35–41.CrossRef
    Davies, S. P., & Jackson, S. K. (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications, 16(4), 1251–1266.CrossRef
    DeShon, J. E. (1995). Development and application of the Invertebrate Community Index (ICI). In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 217–243). Boca Raton: Lewis.
    Fore, L., Karr, J., & Conquest, L. (1994). Statistical properties of an index of biological integrity used to evaluate water resources. Canadian Journal of Fisheries and Aquatic Sciences, 51(5), 1077–1087.CrossRef
    Frey, D. G. (1977). Biological integrity of water—an historical approach. In The integrity of water. Proceedings of a symposium. US Environmental Protection Agency. Washington, DC, USA, 1977 (pp. 127–140). Washington: US Environmental Protection Agency.
    Gakstatter, J., Gammon, J. R., Hughes, R. M., Ischinger, L. S., Johnson, M., Karr, J., Murphy, T., Murray, T. M., & Stuart, T. (1981). A recommended approach for determining biological integrity in flowing waters. Corvallis: U.S. Environmental Protection Agency.
    Gerritsen, J., Stamp J. (2013). Calibration of the Biological Condition Gradient (BCG) in Cold and Cool Waters of the Upper Midwest BCG for Fish and Benthic Macroinvertebrate Assemblages: Prepared by Tetra Tech, Inc. for U.S. Environmental Protection Agency. (Avaiable at: https://​www.​uwsp.​edu/​cnr-ap/​biomonitoring/​Documents/​pdf/​USEPA-BCG-Report-Final-2012.​pdf ).
    Gerritsen, J., Zheng, L., Leppo, E., & Yoder, C. O. (2013). Calibration of the biological condition gradient for streams of Minnesota. St. Paul, MN: prepared for the Minnesota Pollution Control Agency. (Avaiable at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-s6-32.​pdf ).
    Gibson, G. R., Barbour, M., Stribling, J. B., Gerritsen, J., & Karr, J. R. (1996). Biological criteria: technical guidance for streams and rivers - revised edition. Washington, D.C.: U.S. Environmental Protection Agency. (Avaiable at: http://​www.​epa.​gov/​nscep ).
    Gorman, O. T., & Karr, J. R. (1978). Habitat structure and stream fish communities. Ecology, 59(3), 507–515.CrossRef
    Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000a). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10(5), 1456–1477.CrossRef
    Hawkins, C., Norris, R., Gerritsen, J., Hughes, R., Jackson, S., Johnson, R., & Stevenson, R. (2000b). Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society, 19(3), 541–556.CrossRef
    Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29(1), 312–343.CrossRef
    Hughes, R. M., Larsen, D. P., & Omernik, J. M. (1986). Regional reference sites: a method for assessing stream potentials. Environmental Management, 10(5), 629–635.CrossRef
    Hughes, R. M. (1995). Defining acceptable biological status by comparing with reference conditions. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 31–47). Boca Raton: Lewis.
    Karr, J., Fausch, K., Angermeier, P., Yant, P., & Schlosser, I. (1986). Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication, 5, 23.
    Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters. Washington: Island Press.
    Karr, J. R., & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5(1), 55–68.CrossRef
    Karr, J. R., & Yoder, C. O. (2004). Biological assessment and criteria improve total maximum daily load decision making. Journal of Environmental Engineering, 130, 594–604.CrossRef
    Koenker, R. (2009). quantreg: Quantile Regression. R package. (4.44 ed.).
    Lyons, J. (1992). The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. North American Journal of Fisheries Management, 16, 241–256.CrossRef
    Meador, M.R., Cuffney, T.F., and Gurtz, M.E. (1993). Methods for sampling fish communities as a part of the National Water-Quality Assessment Program (Open-File Report 93–104). U.S. Geological Survey (Available at: http://​water.​usgs.​gov/​nawqa/​protocols/​OFR-93-104/​fish1.​html )
    Moya, N., Hughes, R. M., Domínguez, E., Gibon, F.-M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840–847.CrossRef
    MPCA. (2002). Physical Habitat and Water Chemistry Assessment Protocol for Wadeable Stream Monitoring Sites (wq-bsm3-01). St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm3-01.​pdf ).
    MPCA. (2004). Invertebrate Sampling Procedures (wq-bsm3-08). St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm3-08.​pdf ).
    MPCA. (2009). Fish community sampling protocol for stream monitoring sites (wq-bsm3-03). St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm3-03.​pdf ).
    MPCA. (2014a). Development of biological criteria for tiered aquatic life uses: fish and macroinvertebrate thresholds for attainment of aquatic life use goals in Minnesota streams and rivers. St. Paul: Minnesota Pollution Control Agency, Environmental Analysis and Outcomes Division (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm4-02.​pdf ).
    MPCA. (2014b). Development of fish indices of biological integrity (FIBI) for Minnesota rivers and streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm2-03.​pdf ).
    MPCA. (2014c). Development of macroinvertebrate indices of biological integrity (MIBI) for Minnesota streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm4-01.​pdf ).
    MPCA. (2015). Draft technical guidance for designating aquatic life uses in Minnesota streams and rivers. St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-s6-34.​pdf ).
    MPCA. (2016). Development of a Human Disturbance Score (HDS) for Minnesota streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://​www.​pca.​state.​mn.​us/​sites/​default/​files/​wq-bsm3-10.​pdf ). Accessed 17 Feb 2016.
    Ohio, E. P. A. (1987). Biological criteria for the protection of aquatic life: Volume I: the role of biological data in water quality assessment. Columbus: Ohio EPA division of Water Quality Planning and Assessment (Available at: http://​www.​epa.​state.​oh.​us/​Portals/​35/​documents/​Vol1.​pdf ).
    Ohio, E. P. A. (1989). Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities. Columbus: Ohio EPA division of Water Quality Planning and Assessment (Available at: http://​www.​epa.​state.​oh.​us/​portals/​35/​documents/​BioCrit15_​Vol3.​pdf ).
    Paulsen, S. G., Mayio, A., Peck, D. V., Stoddard, J. L., Tarquinio, E., Holdsworth, S. M., Sickle, J. V., Yuan, L. L., Hawkins, C. P., & Herlihy, A. T. (2008). Condition of stream ecosystems in the US: an overview of the first national assessment. Journal of the North American Benthological Society, 27(4), 812–821.CrossRef
    Pont, D., Hugueny, B., Beier, U., Goffaux, D., Melcher, A., Noble, R., Rogers, C., Roset, N., & Schmutz, S. (2006). Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology, 43(1), 70–80.CrossRef
    Pont, D., Hughes, R. M., Whittier, T. R., & Schmutz, S. (2009). A predictive index of biotic integrity model for aquatic-vertebrate assemblages of Western U.S. streams. Transactions of the American Fisheries Society, 138, 292–305.CrossRef
    R Development Core Team. (2015). R: A language and environment for statistical computing. (3.1.3 ed.). Vienna, Austria: R Foundation for Statistical Computing.
    Rankin, E. T. (1995). Habitat indices in water resource quality assessments. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 181–208). Boca Raton: Lewis Publishers.
    Reynoldson, T. B., Day, K. E., & Pascoe, T. (2000). The development of the BEAST: a predictive approach for assessing quality in the North American Great Lakes. In J. F. Wright & D. W. Sutcliffe (Eds.), Assessing the biological quality of fresh waters: RIVPACS and other techniques (pp. 167–180). Cumbria: Freshwater Biological Association.
    Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852.CrossRef
    Schinegger, R., Trautwein, C., Melcher, A., & Schmutz, S. (2012). Multiple human pressures and their spatial patterns in European running waters. Water Environment Journal, 26(2), 261–273.CrossRef
    Schlosser, I. J. (1987). A conceptual framework for fish communities in small warmwater streams. Community and evolutionary ecology of North American stream fishes, 17–26
    Smith, M. J., Kay, W. R., Edward, D. H. D., Papas, P. J., Richardson, J., Simpson, J. C., Pinder, A. M., Cale, D. J., Horwitz, P. H. J., Davis, J. A., Yung, F. H., Norris, R. H., & Halse, S. A. (1999). AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 41, 269–282.CrossRef
    State of Ohio. (2010). State of Ohio Water Quality Standards, Water use designations and statewide criteria, Chapter 3745–1. (Chapter 3745–1). Cincinnatti, Ohio. (Availabe at: http://​www.​epa.​ohio.​gov/​portals/​35/​rules/​01_​all.​pdf ).
    Stoddard, J., Larsen, D., Hawkins, C., Johnson, R., & Norris, R. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16(4), 1267–1276.CrossRef
    Systat Software. (2011). SigmaPlot for Windows (12th ed.). Chicago: Systat Software. Inc.
    USEPA. (1990). Biological Criteria: National program guidance for surface waters (EPA 440/5-90-004). U.S. Environmental Protection Agency: Washington. Avaiable at: http://​www.​epa.​gov/​nscep .
    USEPA. (2011). A primer on using biological assessment to support water quality management (EPA 810-R-11-01). Washington: Office of Science and Technology, Office of Water. Avaiable at: http://​www.​epa.​gov/​nscep .
    USEPA. (2013). Biological assessment program review: assessing level of technical rigor to support water quality management (EPA 820-R-13-001). Washington: Office of Science and Technology. Avaiable at: http://​www.​epa.​gov/​nscep .
    USEPA. (2016). A Practitioner’s Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. Washington: U.S. Environmental Protection Agency. Available at: http://​www.​epa.​gov/​wqc/​biological-assessment-technical-assistance-documents-states-tribes-and-territories . Accessed 17 Feb 2016.
    Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19(3), 370–384.CrossRef
    Vinson, M. R., & Hawkins, C. P. (1996). Effects of sampling area and subsampling procedure in comparisons of taxa richness among streams. Journal of the North American Benthological Society, 15(3), 392–399.CrossRef
    Waite, I. R., Herlihy, A. T., Larsen, D. P., & Klemm, D. J. (2000). Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. Journal of the North American Benthological Society, 19(3), 429–411.CrossRef
    White, D., & Omernik, J. M. (2007). Minnesota level III and IV ecoregions map (scale 1:2,500,000). Corvallis: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division.
    Whittier, T., Hughes, R., Stoddard, J., Lomnicky, G., Peck, D., & Herlihy, A. (2007). A structured approach for developing indices of biotic integrity: three examples from streams and rivers in the Western USA. Transactions of the American Fisheries Society, 136(3), 718–735.CrossRef
    Wright, J. F., Furse, M. T., & Moss, D. (1998). River classification using invertebrates: RIVPACS applications. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 617–631.CrossRef
    Yarbro, L. A., Kuenzler, E. J., Mulholland, P. J., & Sniffen, R. P. (1984). Effects of stream channelization on exports of nitrogen and phosphorus from North Carolina coastal plain watersheds. Environmental Management, 8(2), 151–160.CrossRef
    Yoder, C. (1995). Policy issues and management applications of biological criteria. In W. S. Davis & T. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 327–344). Boca Raton: Lewis Publishers.
    Yoder, C. O., & Rankin, E. T. (1995). Biological criteria program development and implementation in Ohio. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 109–144). Boca Raton: Lewis Publishers.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.CrossRef
    Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779.CrossRef
  • 作者单位:R. William Bouchard Jr. (1)
    Scott Niemela (1)
    John A. Genet (1)
    Chris O. Yoder (2)
    John Sandberg (1)
    Joel W. Chirhart (1)
    Mike Feist (1)
    Benjamin Lundeen (1)
    Dan Helwig (1)

    1. Environmental Analysis and Outcomes Division, Minnesota Pollution Control Agency, 520 Lafayette Road North, Saint Paul, MN, 55155-4194, USA
    2. Midwest Biodiversity Institute & Center for Applied Bioassessment & Biocriteria, P.O. Box 21561, Columbus, OH, 43221-0561, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Water resource protection goals for aquatic life are often general and can result in under protection of some high quality water bodies and unattainable expectations for other water bodies. More refined aquatic life goals known as tiered aquatic life uses (TALUs) provide a framework to designate uses by setting protective goals for high quality water bodies and establishing attainable goals for water bodies altered by legally authorized legacy activities (e.g., channelization). Development of biological criteria or biocriteria typically requires identification of a set of least- or minimally-impacted reference sites that are used to establish a baseline from which goals are derived. Under a more refined system of stream types and aquatic life use goals, an adequate set of reference sites is needed to account for the natural variability of aquatic communities (e.g., landscape differences, thermal regime, and stream size). To develop sufficient datasets, Minnesota employed a reference condition approach in combination with an approach based on characterizing a stream’s response to anthropogenic disturbance through development of a Biological Condition Gradient (BCG). These two approaches allowed for the creation of ecologically meaningful and consistent biocriteria within a more refined stream typology and solved issues related to small sample sizes and poor representation of minimally- or least-disturbed conditions for some stream types. Implementation of TALU biocriteria for Minnesota streams and rivers will result in consistent and protective goals that address fundamental differences among waters in terms of their potential for restoration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700