A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1: Wind and Turbulence
详细信息    查看全文
  • 作者:Matthew A. Nelson ; Michael J. Brown ; Scot A. Halverson…
  • 关键词:Atmospheric surface ; layer winds ; Turbulence ; Urban transport and dispersion ; Vertical structure ; Weather Research and Forecasting
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:158
  • 期:2
  • 页码:285-309
  • 全文大小:4,518 KB
  • 参考文献:Allwine KJ, Leach MJ, Stockham LW, Shinn JS, Hosker RP, Bowers JF, Pace JC (2004) Overview of Joint Urban 2003—an atmospheric dispersion study in Oklahoma City. In: Symposium on planning, nowcasting, and forecasting in the urban zone, American Meteorological Society, Seattle, p J7.1
    Arya SP (1999) Air pollution meteorology and dispersion, 1st edn. Oxford University Press, New York, 310 pp
    Brown MJ (2001) Urban parameterizations for mesoscale models. In: Boybeyi Z (ed) Mesoscale atmospheric dispersion. WIT Press, Southampton, pp 193–255
    Brown MJ, Boswell D, Streit G, Nelson M, McPherson T, Hilton T, Pardyjak ER, Pol S, Ramamurthy P, Hansen B, Kastner-Klein P, Clark J, Moore A, Felton N, Strickland D, Brook D, Princevac M, Zajic D, Wayson R, MacDonald J, Fleming G, Storwold D (2004) Joint Urban 2003 street canyon experiment. In: Symposium on planning, nowcasting, and forecasting in the urban zone, American Meteorological Society, Seattle., p J7.3
    Burian S, Han W, Brown M (2003) Morphological analyses using 3D building databases: Oklahoma City, Oklahoma. Technical Report LA-UR-05-1821, LANL, Los Alamos, NM, U.S.A
    Chen F, Manning KW, LeMone MA, Trier SB, Alfieri JG, Roberts R, Tewari M, Niyogi D, Horst TW, Oncely SP, Basara JB, Blanken PD (2007) Description and evaluation of the characteristics of the ncar high-resolution land data assimilation system. J Appl Meteorol Clim 46:694–713CrossRef
    Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao S, Sailor D, Salamanca FP, Taha H, Tewari M, Wang X, WA A, Zhangh C (2011) The integrated wrf/urban modeling system: development, evaluation, and applications to urban environmental problems. lnt J Climatol 31:273–288CrossRef
    Chin HNS, Leach MJ, Sugiyama GA, Leone JM Jr, Walker H, Nasstrom JS, Brown MJ (2005) Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon Weather Rev 133(7):2043–2068CrossRef
    Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld GJ, Svensson G, Taylor P, Weng W, Wunsch S, Xu KM (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118:273–303CrossRef
    Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a meoscale two-dimensional model. J Atmos Sci 46:3077–3107CrossRef
    Hu XM, Nielsen-Gammon JW, Fa Zhang (2010) Evaluation of three planetary boundary layer schemes in the wrf model. J Appl Meteorol Clim 49:1831–1844CrossRef
    Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous layer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRef
    Kain JS (2004) The kainfritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRef
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (2004) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRef
    Keyser D (2013) NOAA NCEP PrepBufr observation description. http://​www.​emc.​ncep.​noaa.​gov/​mmb/​data_​processing/​prepbufr.​doc/​document.​htm . Accessed 4 Apr 2015
    Kusaka H, Kimura F (2004) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteor Soc Jpn 82:67–80CrossRef
    Lin CY, Chen F, Huang JC, Chen WC, Liou YA, Chen WN, Liu SC (2008) Urban heat island effect and its impact on boundary layer development and land sea circulation over northern Taiwan. Atmos Environ 42:5635–5649CrossRef
    Liu S, Liang XZ (2010) Observed diurnal cycle climatology of planetary boundary layer height. J Clim 23:5790–5809CrossRef
    Liu Y, Chen F, Warner T, Basara J (2006) Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J Appl Meteorol Clim 45:912–929CrossRef
    Martilli A (2007) Current research and future challenges in urban mesoscale modelling. lnt J Climatol 27(14):1909–1918CrossRef
    Mlawer EJ, Taubman SJ, Brown PD, Iancono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J Geophys Res Atmos 102D:16,663–16,682CrossRef
    Niyogi D, Holt T, Zhong S, Pyle PC, Basara J (2006) Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. J Geophys Res 111(D19):107
    Pasquill F, Smith FB (1984) Atmospheric diffusion, 3rd edn. John Wiley and Sons Inc, New York, 429 pp
    Salamanca F, Marilli A, Tewari M, Chen F (2011) A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with wrf. J Appl Meteorol Clim 50:1107–1128CrossRef
    Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 670 pp
    Tewari M, Kusaka H, Chen F, Coirier WJ, Kim S, Wyszogrodzki AA, Warner TT (2010) Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos Res 96:656–664CrossRef
    Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115CrossRef
    Wyszogrodzki AA, Miao S, Chen F (2012) Evaluation of the coupling between mesoscale-wrf and leseulag models for simulating fine-scale urban dispersion. Atmos Res 118:324–345CrossRef
    Xie B, Fung JCH, Chan A, Lau A (2012) Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J Geophys Res 117(D12):103
  • 作者单位:Matthew A. Nelson (1)
    Michael J. Brown (1)
    Scot A. Halverson (1)
    Paul E. Bieringer (2)
    Andrew Annunzio (3)
    George Bieberbach (2)
    Scott Meech (4)

    1. Los Alamos National Laboratory, MS F609, PO Box 1663, Los Alamos, NM, 87545, USA
    2. Aeris, 1723 Madison CT, Louisville, CO, 80027, USA
    3. Citadel, 131 South Dearborn Street, Chicago, IL, 60603, USA
    4. Science and Technology in Atmospheric Research (STAR) LLC, 3125 Sterling Circle, Suite 107, Boulder, CO, 80301, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
Numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (\(u_*\)), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (\(\theta \)), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of \(35^\circ \) and \(1.9\hbox { m s}^{-1}\), respectively. Using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict \(u_*\) that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a \(\theta \) gradient method whether using observed or modelled \(\theta \) profiles. Keywords Atmospheric surface-layer winds Turbulence Urban transport and dispersion Vertical structure Weather Research and Forecasting

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700