Bio-physical Characterization of Poly-dispersed Silver Nanocrystals Fabricated Using Carissa spinarum: A Potent Tool Against Mosquito Vectors
详细信息    查看全文
  • 作者:Marimuthu Govindarajan ; Marcello Nicoletti ; Giovanni Benelli
  • 关键词:FTIR ; SEM ; TEM ; XRD ; Mosquito ; borne diseases
  • 刊名:Journal of Cluster Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:745-761
  • 全文大小:1,022 KB
  • 参考文献:1.H. Mehlhorn, K. A. Al-Rasheid, S. Al-Quraishy, and F. Abdel-Ghaffar (2012). Parasitol. Res. 110, 259.CrossRef
    2.G. Benelli (2015). Parasitol. Res. 114, 2801.CrossRef
    3.M. Govindarajan (2011). Parasitol. Res. 109, 93.CrossRef
    4.G. Benelli (2015). Parasitol. Res. 114, 3201.CrossRef
    5.V. K. Ivanov, A. S. Shaporev, F. Y. Sharikov, and A. Y. Baranchikov (2009). Superlattices Microstruct. 45, 421.CrossRef
    6.K. Veerakumar, M. Govindarajan, M. Rajeswary, and U. Muthukumaran (2014). Parasitol. Res. 113, 1775.CrossRef
    7.U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Parasitol. Res. 114, 1817.CrossRef
    8.M. Zhang, M. Liu, H. Prest, and S. Fischer (2008). Nano Lett. 8, 1277.CrossRef
    9.S. H. Jeong, S. Y. Yeo, and S. C. Yi (2005). J. Mater. Sci. 40, 5407.CrossRef
    10.N. Savithramma, R. M. Linga, K. Rukmini, and D. P. Suvarnalatha (2011). Int. J. Chem. Tech. Res. 3, 1394.
    11.Saxena, R. M. Tripathi, and R. P. Singh (2010). Dig. J. Nanomater. Biostruct. 5, 427.
    12.M. Govindarajan, in H. Mehlhorn (ed.), Nanoparticles in the Fight Against Parasites (Springer International Publishing, Switzerland, 2016). doi:10.​1007/​978-3-319-25292-6_​7 (ISSN: 2192-3671), C7.
    13.G. Benelli (2016). Parasitol. Res. doi:10.​1007/​s00436-015-4800-9 .
    14.B. N. Rose and N. M. Prasad (2013). Asian J. Pharm. Technol. 24, 330.
    15.R. M. Mishra and P. Gupta (2005). Trop. Ecol. 46, 151.
    16.M. M. Vohra and N. N. De (1963). Indian J. Med. Res. 51, 937.
    17.R. J. Rao, U. S. Kumar, S. V. Reddy, A. K. Tiwari, and J. M. Rao (2005). Nat. Prod. Res. 19, 763.CrossRef
    18.T. Teklehaymanot and M. Giday (2007). J. Ethnobiol. Ethnomed. 3, 1.CrossRef
    19.World Health Organization (2005). WHO, Geneva, HO/CDS/WHOPES/GCDPP/1.3.
    20.N. Sivagnaname and M. Kalyanasundaram (2004). Mem. Inst. Oswaldo Cruz Rio. De. Janeiro 99, 115.CrossRef
    21.D. J. Finney Probit Analysis (Cambridge University Press, London, 1971), pp. 68–72.
    22.P. G. Deo, S. B. Hasan, and S. K. Majumdar (1988). Int. Pest Control. 30, 118.
    23.K. Veerekumar, M. Govindarajan, and M. Rajeswary (2013). Parasitol. Res. 112, 4073.CrossRef
    24.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). J. Phys. Chem. B 107, 668.CrossRef
    25.B. P. Singh, B. J. Hatton, B. Singh, A. L. Cowie, and A. Kathuria (2010). J. Environ. Qual. 39, 1.CrossRef
    26.M. Zargar, A. A. Hamid, F. A. Bakar, M. N. Shamsudin, K. Shameli, F. Jahanshiri, and F. Farahani (2011). Molecules 6, 6667.CrossRef
    27.M. Ahmad, D. Mukherjee, S. Mandal, M. I. Senapati, R. Khan, and M. Sastry (2003). Colloids Surf. B 28, 313.CrossRef
    28.N. Shanmugam, P. Rajkamal, S. Cholan, N. Kannadasan, K. Sathishkumar, G. Viruthagiri, and A. Sundaramanickam (2014). Appl. Nanosci. 4, 881.CrossRef
    29.S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, and L. Zhang (2007). Green Chem. 9, 852.CrossRef
    30.P. Prakash, P. Gnanaprakasama, R. Emmanuel, S. Arokiyaraj, and M. Saravanan (2013). Colloids Surf. B 108, 255.CrossRef
    31.P. Magudapatty, P. Gangopadhyayransm, B. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001). Physica B. 299, 142.CrossRef
    32.V. Vignesh, K. F. Anbarasi, S. Karthikeyeni, G. Sathiyanarayanan, P. Subramaniana, and R. Thirumurugan (2013). Colloids Surf. A 439, 184.CrossRef
    33.R. Pavela (2009). Ind. Crops Prod. 30, 311.CrossRef
    34.K. M. Haldar, B. Haldar, and G. Chandra (2013). Parasitol. Res. 112, 1451.CrossRef
    35.C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe, and B. K. Salunke (2012). Parasitol. Res. 111, 555.CrossRef
    36.S. Subarani, S. Sabhanayakam, and C. Kamaraj (2013). Parasitol. Res. 112, 487.CrossRef
    37.A. Rawani, A. Ghosh, and G. Chandra (2013). Acta. Trop. 128, 613.CrossRef
    38.R. Ramanibai and K. Velayutham (2015). Res. Vet. Sci. 98, 82.CrossRef
    39.K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, and D. Dinesh (2015). Exp. Parasitol. 153, 129.CrossRef
    40.G. Benelli (2016). Asian Pac. J. Trop. Biomed. doi:10.​1016/​j.​apjtb.​2015.​10.​015 .
  • 作者单位:Marimuthu Govindarajan (1)
    Marcello Nicoletti (2)
    Giovanni Benelli (3)

    1. Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India
    2. Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
    3. Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
In this research, green synthesis of silver nanoparticles (Ag NP) using a cheap, aqueous leaf extract of Carissa spinarum has been investigated. Bio-reduced Ag NP were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. The acute toxicity of C. spinarum leaf extract and biosynthesized Ag NP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the C. spinarum leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against A. subpictus, A. albopictus, and C. tritaeniorhynchus with LC50 values of 8.37, 9.01 and 10.04 μg/mL, respectively. Biosynthesized Ag NP were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri and Gambusia affinis, with respective LC50 values ranging from 424.09 to 647.45 µg/mL. Overall, this study highlights the concrete potential of C. spinarum as a potential bio-resource for rapid, cheap and effective synthesis of mosquitocides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700