Brain–computer interfaces and dualism: a problem of brain, mind, and body
详细信息    查看全文
  • 作者:Joseph Lee
  • 关键词:Brain–computer interface (BCI) ; Dualism ; Intentions ; Interactions ; Brain ; Mind
  • 刊名:AI & Society
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:31
  • 期:1
  • 页码:29-40
  • 全文大小:451 KB
  • 参考文献:Abramson D (2011) Philosophy of mind is (in part) philosophy of computer science. Minds Mach 21:203–219CrossRef
    Al-Hudhud G et al (2014) Using brain signals patterns for biometric identity verification systems. Comput Hum Behav 31:224–229CrossRef
    Allison BZ et al (2012) Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J Neural Eng 9. doi:10.​1088/​1741-2560/​9/​1/​013001
    Andersen RA et al (2010) Cognitive neural prosthetics. Annu Rev Psychol 61:169–190CrossRef
    Anonymous (2013) My life with Parkinson’s. Nature 503:29–30CrossRef
    Aranyosi I (2011) A new argument for mind–brain identity. Br J Philos Sci 62:489–517CrossRef
    Baldwin DA, Baird JA (2001) Discerning intentions in dynamic human action. Trends Cogn Sci 5:171–178CrossRef
    Barrett JA (2006) A quantum-mechanical argument for mind–body dualism. Erkenntnis 65:97–115CrossRef
    Beauregard M (2007) Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol 81:218–236CrossRef
    Bekey GA (2005) Autonomous robots, from biological inspiration to implementation and control. MIT Press, Cambridge
    Belda-Lois J-M et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEng Rehabil 8. doi:10.​1186/​1743-0003-8-66
    Bell CJ et al (2008) Control of a humanoid robot by a noninvasive brain–computer interface in humans. J Neural Eng 5:214–220CrossRef
    Bickle J (2001) Understanding neural complexity: a role for reduction. Minds Mach 11:467–481CrossRef
    Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532CrossRef
    Birbaumer N, Cohen LG (2007) Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636CrossRef
    BonJour L (2010) Against materialism. In: Koons RC, Bealer G (eds) The waning of materialism. Oxford University Press, Oxford, pp 3–23CrossRef
    Bonnet L, Lotte F, Lécuyer A (2013) Two brains, one game: design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans Comput Intell AI Games 5:185–198CrossRef
    Brack A, Troublé M (2010) Defining life: connecting robotics and chemistry. Orig Life Evol Biosph 40:131–136CrossRef
    Brumberg JS, Guenther FH (2010) Development of speech prostheses: current status and recent advances. Expert Rev Med Devices 7:667–679CrossRef
    Brumberg JS et al (2010) Brain–computer interfaces for speech communication. Speech Commun 52:367–379CrossRef
    Brunner P et al (2011) Current trends in hardware and software for brain–computer interfaces (BCIs). J Neural Eng 8. doi:10.​1088/​1741-2560/​8/​2/​025001
    Campbell CM, Edwards RR (2009) Mind–body interactions in pain: the neurophysiology of anxious and catastrophic pain-related thoughts. Transl Res 153:97–101CrossRef
    Campbell M, Hoane J Jr, Hsu H-f (2002) Deep blue. AI 134:57–83MATH
    Chai R et al (2012) Mental non-motor imagery tasks classifications of brain computer interface for wheelchair commands using genetic algorithm-based neural network. Proc2012 Int Joint Conf Neural Netw, 10–15 June 2012, doi:10.​1109/​IJCNN.​2012.​6252499
    Chapin JK et al (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670CrossRef
    Churchland PM (1981) Eliminative materialism and the propositional attitudes. J Philos 78:67–90
    Coeckelbergh M (2011) You, robot: on the linguistic construction of artificial others. AI Soc 26:61–69CrossRef
    de Kamps M (2012) Towards truly human-level intelligence in artificial applications. Cogn Syst Res 14:1–9MathSciNet CrossRef
    De Massari D et al (2013) Brain communication in the locked-in state. Brain 136:1989–2000CrossRef
    DiGiovanna J et al (2009) Brain–machine interface via reinforcement learning. IEEE Trans Biomed Eng 56:54–64CrossRef
    Donoghue JP (2008) Bridging the brain to the world: a perspective on neural interface systems. Neuron 60:511–521CrossRef
    Ducao A, Tseng T, von Kapri A (2012) Transparent: brain computer interface and social architecture. Proc SIGGRAPH’12 ACM SIGGRAPH 2012 Posters. doi:10.​1145/​2342896.​2342929
    Dumit J (2004) Picturing personhood: brain scans and biomedical identity. Princeton University Press, Princeton
    Durkin J (2003) Man and machine: I wonder if we can coexist. AI Soc 17:383–390CrossRef
    Edelman GM (1992) Bright air, brilliant fire: on the matter of the mind. Basic Books, New York
    Ekandem JI et al (2012) Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 55:592–598CrossRef
    Engel AK et al (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6:35–47CrossRef
    Evers K, Sigman M (2013) Possibilities and limits of mind-reading: a neurophilosophical perspective. Conscious Cogn 22:887–897CrossRef
    Fan JM et al (2014) Intention estimation in brain–machine interfaces. J Neural Eng. doi:10.​1088/​1741-2560/​11/​1/​016004
    Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523CrossRef
    Fernandez-Vargas J (2013) Assisted closed-loop optimization of SSVEP-BCI efficiency. Front Neural Circuits 7:27. doi:10.​3389/​fncir.​2013.​00027 CrossRef
    Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Natural world physical, brain operational, and mind phenomenal space–time. Phys Life Rev 7:195–249CrossRef
    Flanagan O (2005) History of the philosophy of mind. In: Honderich T (ed) The Oxford companion to philosophy, new edn. Oxford University Press, Oxford, pp 603–607
    Frisoli A et al (2012) A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks. IEEE Trans Syst Man Cybern C Appl Rev 42:1169–1179CrossRef
    Gergondet P et al (2011) Using brain–computer interface to steer a humanoid robot. Proc 2011 IEEE Int Conf Robotics Biomim (ROBIO) 192–197
    Glannon W (2009) Our brains are not us. Bioethics 23:321–329CrossRef
    Gollwitzer PM (1993) Goal achievement: the role of intentions. Euro Rev Soc Psychol 4:141–185CrossRef
    Gomez-Rodriguez M et al (2011) Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng 8. doi:10.​1088/​1741-2560/​8/​3/​036005
    Green AM, Kalaska JF (2011) Learning to move machines with the mind. Trends Neurosci 34:61–75CrossRef
    Grübler G (2011) Beyond the responsibility gap. Discussion note on responsibility and liability in the use of brain–computer interfaces. AI Soc 26:377–382CrossRef
    Gürkök H, Nijholt A (2012) Brain–computer interfaces for multimodal interaction: a survey and principles. Int J Hum Comput Interact 28:292–307CrossRef
    Gürkök H et al (2013) Evaluating a multi-player brain–computer interface game: challenge versus co-experience. Entertain Comput 4:195–203CrossRef
    Haig AJ, Katz RT, Sahgal V (1987) Mortality and complications of the locked-in syndrome. Arch Phys Med Rehabil 68:24–27
    Hainline B (2011) Neuropathic pain: mind–body considerations. Neurol Clin 29:19–33CrossRef
    Harnad S, Scherzer P (2008) First, scale up to the robotic Turing test, then worry about feeling. AI Med 44:83–89
    Hasan BAS, Gan JO (2012) Hangman BCI: an unsupervised adaptive self-paced brain–computer interface for playing games. Comput Biol Med 42:598–606CrossRef
    Haselager P (2013) Did I do that? Brain–computer interfacing and the sense of agency. Minds Mach 23:405–418CrossRef
    Hatfield G (2000) The brain’s ‘new’ science: psychology, neurophysiology, and constraint. Philos Sci 67:S388–S403CrossRef
    Hatsopoulos HG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266CrossRef
    Hirata M et al (2012) Motor restoration based on the brain–machine interface using brain surface electrodes: real-time robot control and a fully implantable wireless system. Adv Robot 26:399–408CrossRef
    Hochberg LR et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375CrossRef
    Hustvedt S (2013) Philosophy matters in brain matters. Seizure 22:169–173CrossRef
    Iáñez E et al (2010) Mental tasks-based brain–robot interface. Robot Auton Syst 58:1238–1245CrossRef
    Kaitaro T (2004) Brain–mind identities in dualism and materialism: a historical perspective. Stud Hist Philos Biol Biomed Sci 35:627–645CrossRef
    Kelley R et al (2014) Intent recognition for human–robot interaction. In: Sukthankar G et al (eds) Plan, activity, and intent recognition: theory and practice. Morgan Kaufmann, Waltham, pp 343–365CrossRef
    Kendler KS, Campbell J (2009) Interventionist causal models in psychiatry: repositioning the mind–body problem. Psychol Med 39:881–887CrossRef
    Kihlstrom JH (2008) Placebo: feeling better, getting better, and the problems of mind and body. McGill J Med 11:212–213
    Kim J (1998) The mind–body problem after fifty years. In: O’Hear A (ed) Current issues in the philosophy of mind. Cambridge University Press, Cambridge, pp 3–21CrossRef
    Kim H-Y (2008) Locke and the mind–body problem: an interpretation of his agnosticism. Philoshy 83:439–458CrossRef
    Krepki R et al (2007) The Berlin brain–computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33:73–90CrossRef
    Kron SS (2012) The mind body problem. Anesthesiology 116:219–221CrossRef
    Kübler A et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124:223–232CrossRef
    Kwok R (2013) Neuroprosthetics: once more, with feeling. Nature 497:176–178CrossRef
    Kyselo M (2013) Locked-in syndrome and BCI—towards an enactive approach to the self. Neuroethics 6:579–591CrossRef
    Laureys S et al (2005) The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res 150:495–511CrossRef
    Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. Trends Neurosci 29:536–546CrossRef
    Lee B, Liu CY, Apuzzo MLJ (2013) A primer on brain–machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 79:457–471CrossRef
    Lin C-T et al (2010) Review of wireless and wearable electroencephalogram systems and brain–computer interfaces—a mini-review. Gerontology 56:112–119CrossRef
    Lopes DM (2010) A philosophy of computer art. Routledge, Oxford
    Lucivero F, Tamburrini G (2008) Ethical monitoring of brain–machine interfaces. AI Soc 22:449–460CrossRef
    Lulé D et al (2009) Life can be worth living in locked-in syndrome. Prog Brain Res 177:339–351CrossRef
    Lulé D et al (2013) Probing command following in patients with disorders of consciousness using a brain–computer interface. Clin Neurophysiol 124:101–106CrossRef
    Lycan WG (2009) Giving dualism its due. Australas J Philos 87:551–563CrossRef
    MacDorman KF, Ishiguro H (2006) The uncanny advantage of using androids in cognitive and social science research. Interact Stud 7:297–337CrossRef
    Marshall PJ (2009) Relating psychology and neuroscience: taking up the challenges. Perspect Psychol Sci 4:113–125CrossRef
    Mazzone M (2011) Intentions as complex entities. Rev Philos Psychol 2:767–783CrossRef
    McFarland D (2008) Guilty robots, happy dogs: the question of alien minds. Oxford University Press, Oxford
    McGinn C (1989) Can we solve the mind–body problem? Mind 98:349–366CrossRef
    Molyneux B (2012) How the problem of consciousness could emerge in robots. Minds Mach 22:277–297CrossRef
    Morris K (2004) Mind moves onscreen: brain–computer interface comes to trial. Lancet Neurol 3:329CrossRef
    Murguialday R et al (2011) Transition from the locked into the completely locked-in state: a physiological analysis. Clin Neurophysiol 122:925–933CrossRef
    Nagasawa Y (2012) Infinite decomposability and the mind–body problem. Am Philos Q 49:357–367
    Nagel T (1974) What is it like to be a bat? Philos Rev 83:435–450CrossRef
    Nakahara K, Miyashita Y (2005) Understanding intentions: through the looking glass. Science 308:644–645CrossRef
    Narayanan A (2013) Society under threat… but not from AI. AI Soc 28:87–94CrossRef
    Niazi IK et al (2012) Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans Neural Syst Rehabil Eng 20:595–604CrossRef
    Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12:1211–1279CrossRef
    Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature Rev Neurosci 10:530–540CrossRef
    Ortner R et al (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19:1–5CrossRef
    Papies EK et al (2009) Planning is for doing: implementation intentions go beyond the mere creation of goal-directed associations. J Exp Soc Psychol 45:1148–1151CrossRef
    Pearson Y, Borenstein J (2013) The intervention of robot caregivers and the cultivation of children’s capability to play. Sci Eng Ethics 19:123–137CrossRef
    Pérez-Marcos D, Buitrago JA, Velásquez FDG (2011) Writing through a robot: a proof of concept for a brain–machine interface. Med Eng Phys 33:1314–1317CrossRef
    Pfurtscheller G et al (2003) ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36CrossRef
    Poel M et al (2012) Brain computer interfaces as intelligent sensors for enhancing human–computer interaction. In: Proceedings of 14th ACM international conference multimodal interact, 22–26 Oct 2012, Santa Monica, CA, 379–382
    Pribram KH (1998) Thoughts on the meaning of brain electrical activity. Int J Psychol 33:213–225CrossRef
    Rockwell WT (2007) Neither brain nor ghost, a nondualist alternative to the mind–brain identity theory. The MIT Press, Cambridge
    Rocon E et al (2010) Multimodal BCI-mediated FES suppression of pathological tremor. 2010 Annu Int Conf IEEE Eng Med Biol Soc (EMBC), 3337–3340
    Rohm M et al (2013) Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. AI Med 59:133–142
    Ropper AJ (2010) Cogito ergo sum by MRI. New Eng J Med 362:648–649CrossRef
    Rubinstein JT (2004) How cochlear implants encode speech. Curr Opin Otolaryngol Head Neck Surg 12:444–448CrossRef
    Sanchez JC et al (2009) Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants. Neural Netw 22:305–315CrossRef
    Sartenaer O (2013) Neither metaphysical dichotomy nor pure identity: clarifying the emergentist creed. Stud Hist Philos Biol Biomed Sci 44:365–373CrossRef
    Scherberger H (2009) Neural control of motor prostheses. Curr Opin Neurobiol 19:629–633CrossRef
    Scherer R, Pfurtscheller G (2013) Thought-based interaction with the physical world. Trends Cogn Sci 17:490–492CrossRef
    Scherer R et al (2013) Brain–computer interfacing: more than the sum of its parts. Soft Comput 17:317–331CrossRef
    Schimmel P (2001) Mind over matter? I: philosophical aspects of the mind–brain problem. Aust NZ J Psychiatry 35:481–487CrossRef
    Schneider S (2013) Non-reductive physicalism and the mind problem. Noûs 47:135–153CrossRef
    Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3:417–424CrossRef
    Searle JR (1984) Minds, brains and science, the 1984 Reith Lectures. Harvard University Press, Cambridge
    Searle JR (1992) The rediscovery of the mind. The MIT Press, Cambridge
    Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548CrossRef
    Smart JJC (1963) Materialism. J Philos 60:651–662CrossRef
    Solis J et al (2010) Development of the anthropomorphic saxophonist robot WAS-1: mechanical design of the simulated organs and implementation of air pressure feedback control. Adv Robot 24:629–650CrossRef
    Stoll J et al (2013) Pupil responses allow communication in locked-in syndrome patients. Curr Biol 23:R647–R648CrossRef
    Tan L-F et al (2014) Effect of mindfulness meditation on brain–computer interface performance. Conscious Cogn 23:12–21CrossRef
    Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832CrossRef
    Taylor DM, Tillery SI, Schwartz AB (2003) Information conveyed through brain-control: cursor versus robot. IEEE Trans Neural Syst Rehabil Eng 11:195–199CrossRef
    Thinnes-Elker F et al (2012) Intention concepts and brain–machine interfacing. Front Psychol 3. doi:10.​3389/​fpsyg.​2012.​00455
    Tretter F (2010) Philosophical aspects of neuropsychiatry. In: Tretter F et al (eds) Systems biology in psychiatric research: from high-throughput data to mathematical modelling. Wiley-Blackwell, Weinheim, pp 3–25CrossRef
    Uithol S et al (2014) Why we may not find intentions in the brain. Neuropsychologia 56:129–139CrossRef
    Ungar T, Knaak S (2013) The hidden medical logic of mental health stigma. Aust NZ J Psychiatry 47:611–612CrossRef
    Velliste M (2008) Cortical control of a prosthetic arm for self-feeding. Nature 53:1098–1101CrossRef
    Verbeek P-P (2008) Cyborg intentionality: rethinking the phenomenology of human–technology relations. Phenomenol Cognit Sci 7:387–395CrossRef
    Vidal F (2009) Brainhood, anthropological figure of modernity. Hist Hum Sci 22:5–36CrossRef
    Wasserman EA (1993) Comparative cognition: beginning the second century of the study of animal intelligence. Psychol Bull 113:211–228CrossRef
    Weisberg DS et al (2008) The seductive allure of neuroscience explanations. J Cogn Neurosci 20:470–477CrossRef
    Wellman HM et al (2009) Early intention understandings that are common to primates predict children’s later theory of mind. Curr Opin Neurobiol 19:57–62CrossRef
    Williams JJ et al (2013) Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI. J Neural Eng 10. doi:10.​1088/​1741-2560/​10/​4/​046001
    Wolpaw JR et al (2000) Brain–computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173CrossRef
    Wolpaw JR et al (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRef
    Yu T et al (2012) Surfing the internet with a BCI mouse. J Neural Eng 9. doi:10.​1088/​1741-2560/​9/​3/​036012
    Zhang Q et al (2011) Building brain machine interfaces: from rat to monkey. In: Proceedings of 2011 8th Asian Control Conference (ASCC) Kaohsiung, Taiwan, May 15–18, 2011, pp 886–891
    Zhou J et al (2009) EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects. Comput Biol Med 39:443–452CrossRef
    Zickler CA et al (2013) Brain painting: usability testing according to the user-centered design in end users with severe motor paralysis. AI Med 59:99–110
  • 作者单位:Joseph Lee (1)

    1. Flinders University, G.P.O. Box 2100, Adelaide, SA, 5032, Australia
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Science, general
    Engineering Economics, Organization, Logistics and Marketing
    Automation and Robotics
  • 出版者:Springer London
  • ISSN:1435-5655
文摘
The brain–computer interface (BCI) has made remarkable progress in the bridging the divide between the brain and the external environment to assist persons with severe disabilities caused by brain impairments. There is also continuing philosophical interest in BCIs which emerges from thoughtful reflection on computers, machines, and artificial intelligence. This article seeks to apply BCI perspectives to examine, challenge, and work towards a possible resolution to a persistent problem in the mind–body relationship, namely dualism. The original humanitarian goals of BCIs and the technological inventiveness result in BCIs being surprisingly useful. We begin from the neurologically impaired person, the problems encountered, and some pioneering responses from computers and machines. Secondly, the interface of mind and brain is explored via two points of clarification: direct and indirect BCIs, and the nature of thoughts. Thirdly, dualism is beset by mind–body interaction difficulties and is further questioned by the phenomena of intentions, interactions, and technology. Fourthly, animal minds and robots are explored in BCI settings again with relevance for dualism. After a brief look at other BCIs, we conclude by outlining a future BCI philosophy of brain and mind, which might appear ominous and could be possible. Keywords Brain–computer interface (BCI) Dualism Intentions Interactions Brain Mind

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700