Artificial feedback for invasive brain–computer interfaces
详细信息    查看全文
  • 作者:A. M. Badakva ; N. V. Miller ; L. N. Zobova
  • 关键词:brain–computer interfaces ; implantable multichannel microelectrode ; artificial sensory feedback ; intracortical microstimulation
  • 刊名:Human Physiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:111-118
  • 全文大小:205 KB
  • 参考文献:1.Baranauskas, G., What limits the performance of current invasive brain computer machine interfaces?, Front. Syst. Neurosci., 2014, vol. 8, pp. 68.CrossRef PubMed PubMedCentral
    2.Evarts, E.V., Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol., 1968, vol. 31, no. 1, p. 14.PubMed
    3.Humphrey, D.R., Schmidt, E.M., and Thompson, W.D., Predicting measures of motor performance from multiple cortical spike trains, Science, 1970, vol. 170, no. 3959, p. 758.CrossRef PubMed
    4.Fetz, E.E., Operant conditioning of cortical unit activity, Science, 1969, vol. 163, no. 3870, p. 955.CrossRef PubMed
    5.Georgopoulos, A.P., Schwartz, A.B., and Ketiner, R.E., Neuronal population coding of movement direction, Science, 1986, vol. 233, no. 4771, p. 1416.CrossRef PubMed
    6.Georgopoulos, A.P., Kettner, R.E., and Schwartz, A.B., Primate motor cortex and free arm movements to visual targets in three-dimensional space: II. Coding of the direction of movement by a neuronal population, J. Neurosci., 1988, vol. 8, no. 8, p. 2928.PubMed
    7.Chapin, J.K., Moxon, K.A., Markowitz, R.S., and Nicolelis, M.A., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex, Nat. Neurosci., 1999, vol. 2, no. 7, p. 664.CrossRef PubMed
    8.Carmena, J.M., Lebedev, M.A., Crist, R.E., et al., Learning to control a brain-machine interface for reaching and grasping by primates, PLoS Biol., 2003, vol. 1, no. 2, p. 193.CrossRef
    9.Musallam, S., Corneil, B.D., Greger, B., et al., Cognitive control signals for neural prosthetics, Science, 2004, vol. 305, no. 5681, p. 258.CrossRef PubMed
    10.Santhanam, G., Ryu, S.I., Yu, B.M., et al., A high-performance brain-computer interface, Nature, 2006, vol. 442, no. 7099, p. 195.CrossRef PubMed
    11.Serruya, M.D., Hatsopoulos, N.G., Paninski, L., et al., Brain-machine interface: instant neural control of a movement signal, Nature, 2002, vol. 416, pp. 141.CrossRef PubMed
    12.Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B., Direct cortical control of 3D neuroprosthetic devices, Science, 2002, vol. 296, no. 5574, p. 1829.CrossRef PubMed
    13.Fallon, J.B., Irvine, D.R.F., and Shepherd, R.K., Neural prostheses and brain plasticity, J. Neural Eng., 2009, vol. 6, no. 6, 065008.CrossRef PubMed PubMedCentral
    14.Sedwick, C., Practice makes perfect: Learning mind control of prosthetics, PLoS Biol., 2009, vol. 7, no. 7, e1000152.CrossRef PubMed PubMedCentral
    15.Wang, W., Collinger, J.L., Perez, M.A., et al., Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity, Phys. Med. Rehabil. Clin. North Am., 2010, vol. 21, no. 1, p. 157.CrossRef
    16.Johansson, R.S. and Flanagan, J.R., Coding and use of tactile signals from the fingertips in object manipulation tasks, Nat. Rev. Neurosci., 2009, vol. 10, no. 5, p. 345.CrossRef PubMed
    17.Wheat, H.E., Goodwin, A.W., and Browning, A.S., Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad, J. Neurosci., 1975, vol. 15, no. 8, p. 5582.
    18.Jones, L.A. and Smith, A.M., Tactile sensory system: encoding from the periphery to the cortex, Wiley Interdiscip. Rev. Syst. Biol. Med., 2014, vol. 6, no. 3, p. 279.CrossRef PubMed
    19.Sainburg, R.L., Ghilardi, M.F., Poizner, H., and Ghez, C., Control of limb dynamics in normal subjects and patients without proprioception, J. Neurophysiol., 1995, vol. 73, no. 2, p. 820.PubMed
    20.Shenoy, K.V., Sahani, M., and Churchland, M.M., Cortical control of arm movements: a dynamical systems perspective, Annu. Rev. Neurosci., 2013, vol. 36, pp. 337.CrossRef PubMed
    21.Lebedev, M.A., Tate, A.J., Hanson, T.L., et al., Future developments in brain-machine interface research, Clinics, 2011, vol. 66, no. S1, p. 25.CrossRef PubMed PubMedCentral
    22.Bensmaia, S.J. and Miller, L.E., Restoring sensorimotor function through intracortical interfaces: progress and looming challenges, Nat. Rev. Neurosci., 2014, vol. 15, no. 5, p. 313.CrossRef PubMed
    23.Suminski, A.J., Tkach, D.C., Fagg, A.H., and Hatsopoulos, N.G., Incorporating feedback from multiple sensory modalities enhances brain-machine interface control, J. Neurosci., 2010, vol. 30, no. 50, p. 16777.CrossRef PubMed PubMedCentral
    24.Gilja, V., Chestek, C.A., Diester, I., et al., Challenges and opportunities for next-generation intracortically based neural prostheses, IEEE Trans. Biomed. Eng., 2011, vol. 58, no. 7, p. 1891.CrossRef PubMed PubMedCentral
    25.Green, A.M. and Kalaska, J.F., Learning to move machines with the mind, Trends Neurosci., 2011, vol. 34, no. 2, p. 61.CrossRef PubMed
    26.Venkatraman, S. and Carmena, J.M., Active sensing of target location encoded by cortical microstimulation, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, vol. 19, no. 3, p. 317.CrossRef PubMed
    27.Chambers, C.D. and Mattingley, J.B., Neurodisruption of selective attention: insights and implications, Trends Cognit. Sci., 2005, vol. 9, no. 11, p. 542.CrossRef
    28.Graziano, M.S.A., Taylor, C.S.R., and Moore, T., Complex movements evoked by microstimulation of precentral cortex, Neuron, 2002, vol. 34, pp. 841.CrossRef PubMed
    29.Tehovnik, E.J., Tolias, A.S., Sultan, F., et al., Direct and indirect activation of cortical neurons by electrical microstimulation, J. Neurophysiol., 2006, vol. 96, no. 2, p. 512.CrossRef PubMed
    30.Romo, R., Hernández, A., Zainos, A., and Salinas, E., Somatosensory discrimination based on cortical microstimulation, Nature, 1998, vol. 392, no. 6674, p. 387.CrossRef PubMed
    31.Romo, R., Hernández, A., Zainos, A., et al., Sensing without touching: psychophysical performance based on cortical microstimulation, Neuron, 2000, vol. 26, no. 1, p. 273.CrossRef PubMed
    32.de Lafuente, V. and Romo, R., Neuronal correlates of subjective sensory experience, Nat. Neurosci, 2005, vol. 8, no. 12, p. 1698.CrossRef PubMed
    33.Fitzsimmons, N.A., Drake, W., Hanson, T.L., et al., Primate reaching cued by multichannel spatiotemporal cortical microstimulation, J. Neurosci., 2007, vol. 27, no. 21, p. 5593.CrossRef PubMed
    34.O’Doherty, J.E., Lebedev, M.A., Hanson, T.L., et al., A brain-machine interface instructed by direct intracortical microstimulation, Front. Integr. Neurosci., 2009, vol. 3, no. 20, p. 5.
    35.O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., et al., Active tactile exploration enabled by a brain-machine
    ain interface, Nature, 2011, vol. 479, no. 7372, p. 228.CrossRef PubMed PubMedCentral
    36.Histed, M.H., Ni, A.M., and Maunsell, J.H.R., Insights into cortical mechanisms of behavior from microstimulation experiments. Conversion of Sensory Signals into Perceptions, Memories and Decisions, Prog. Neurobiol., 2013, vol. 103, pp. 115.CrossRef PubMed PubMedCentral
    37.Merrill, D.R., Bikson, M., and Jefferys, J.G.R., Electrical stimulation of excitable tissue: design of efficacious and safe protocols, J. Neurosci. Meth., 2005, vol. 141, no. 2, p. 171.CrossRef
    38.Joucla, S., Branchereau, P., Cattaert, D., and Yvert, B., Extracellular neural microstimulation may activate much larger regions than expected by simulations: a combined experimental and modeling study, PLoS One, 2012, vol. 7, no. 8, e41324.CrossRef PubMed PubMedCentral
    39.Overstreet, C.K., Klein, J.D., and Helms Tillery, S.I., Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex, J. Neural Eng., 2013, vol. 10, no. 6, 066016.CrossRef PubMed
    40.Song, W., Kerr, C.C., Lytton, W.W., and Francis, J.T., Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex, PLoS One, 2013, vol. 8, no. 3, e57453.CrossRef PubMed PubMedCentral
    41.Medina, L.E., Lebedev, M.A., O’Doherty, J.E., and Nicolelis, M.A.L., Stochastic facilitation of artificial tactile sensation in primates, J. Neurosci., 2012, vol. 32, no. 41, p. 14271.CrossRef PubMed PubMedCentral
    42.Zaaimi, B., Ruiz-Torres, R., Solla, S.A., and Miller, L.E., Multi-electrode stimulation in somatosensory cortex increases probability of detection, J. Neural Eng., 2013, vol. 10, no. 5, 056013.CrossRef PubMed
    43.Weber, D.J., London, B.M., Hokanson, J.A., et al., Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, vol. 19, no. 5, p. 501.CrossRef PubMed PubMedCentral
    44.Kim, S., Callier, T., Tabot, G., et al., Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes, Front. Syst. Neurosci., 2015, vol. 9, art. 47.PubMed PubMedCentral
    45.Taoka, M., Toda, T., and Iwamura, Y., Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex, Exp. Brain Res., 1998, vol. 123, no. 3, p. 315.CrossRef PubMed
    46.Iwamura, Y., Tanaka, M., Sakamoto, M., and Hikosaka, O., Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey, Exp. Brain Res., 1983, vol. 51, no. 3, p. 315.
    47.Kaas, J.H., The functional organization of somatosensory cortex in primates, Ann. Anat., 1993, vol. 175, no. 6, p. 509.CrossRef PubMed
    48.Krubitzer, L.A. and Kaas, J.H., The organization and connections of somatosensory cortex in marmosets, J. Neurosci., 1990, vol. 10, no. 3, p. 952.PubMed
    49.Kaas, J.H., Stepniewska, I., and Gharbawie, O., Cortical networks subserving upper limb movements in primates, Eur. J. Phys. Rehabil. Med., 2012, vol. 48, no. 2, p. 299.PubMed PubMedCentral
    50.Sur, M., Garraghty, P.E., and Bruce, C.J., Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and I, Brain Res., 1985, vol. 342, no. 2, p. 391.CrossRef PubMed
    51.Reed, J.L., Qi, H.X., Pouget, P., et al., Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation, J. Neurophysiol., 2010, vol. 104, no. 6, p. 3136.CrossRef PubMed PubMedCentral
    52.Lipton, M.L., Liszewski, M.C., O’Connell, M.N., et al. Interactions within the hand representation in primary somatosensory cortex of primates, J. Neurosci., 2010, vol. 30, no. 47, p. 15895.CrossRef PubMed PubMedCentral
    53.Thakur, P.H., Fitzgerald, P.J., and Hsiao, S.S., Secondorder receptive fields reveal multidigit interactions in area 3b of the macaque monkey, J. Neurophysiol., 2012, vol. 108, pp. 243.CrossRef PubMed PubMedCentral
    54.Friedman, R.M., Chen, L.M., and Roe, A.W., Responses of areas 3b and 1 in anesthetized squirrel monkeys to singleand dual-site stimulation of the digits, J. Neurophysiol., 2008, vol. 100, pp. 3185.CrossRef PubMed PubMedCentral
    55.Negyessy, L., Palfi, E., Ashaber, M., et al., Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence, J. Comp. Neurol., 2013, vol. 521, no. 12, p. 2798.CrossRef PubMed PubMedCentral
    56.Andersen, R.A., Kellis, S., Klaes, C., and Aflalo, T., Toward more versatile and intuitive cortical brainmachine interfaces, Curr. Biol., 2014, vol. 24, no. 18, p. R885.CrossRef PubMed PubMedCentral
    57.Fagg, A.H., Hatsopoulos, N.G., Lafuente, V., et al., Biomimetic brain machine interfaces for the control of movement, J. Neurosci., 2007, vol. 27, no. 44, p. 11842.CrossRef PubMed PubMedCentral
    58.Krubitzer, L., Huffman, K.J., Disbrow, E., and Recanzone, G., Organization of area 3a in macaque monkeys: contributions to the cortical phenotype, J. Comp. Neurol., 2004, vol. 471, no. 1, p. 97.CrossRef PubMed
    59.London, B.M., Jordan, L.R., Jackson, C.R., and Miller, L.E., Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey, IEEE Trans. Neural Syst. Rehabil. Eng., 2008, vol. 16, no. 1, p. 32.CrossRef PubMed PubMedCentral
    60.Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback: intracortical microstimulation (ICMS) replaces and augments vision, Proc. 6th Int. Conf. IEEE EMBS Neural Eng. Conf., 2013.
    61.Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback, in Brain-Computer Interface Research, Springer Briefs in Electrical and Computer Engineering, 2014, p. 31.
    62.Makin, J.G. and Sabes, P.N., Sensory integration and density estimation, Adv. Neural Inf. Process. Syst., 2014, p. 478.
    63.Dadarlat, M.C., O’Doherty, J.E., and Sabes, P.N., A learning-based approach to artificial sensory feedback leads to optimal integration, Nat. Neurosci., 2015, vol. 18, no. 1, p. 138.CrossRef PubMed PubMedCentral
    64.Vato, A., Semprini, M., Maggiolini, E., et al., Shaping the dynamics of a bidirectional neural interface, PLoS Comput. Biol., 2012, vol. 8, no. 7, e1002578.CrossRef PubMed PubMedCentral
    65.Roschin, V.Y., Frolov, A.A., Burnod, Y., and Maier, M.A., A neural network model for the acquisition of a spatial body scheme through sensory-motor interaction, Neural Comput., 2011, vol. 23, no. 7, p. 1821.CrossRef PubMed
    66.Hatsopoulos, N.G. and Donoghue, J.P., The science of neural interface systems, Annu. Rev. Neurosci., 2009, vol. 32, pp. 249.CrossRef PubMed PubMedCentral
    67.Chao, Z.C., Nagasaka, Y., and Fujii, N., Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys, Front. Neuroeng., 2010, vol. 3, pp. 3.PubMed PubMedCentral
    68.Schalk, G., Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces?, Front. Neuroeng., 2010, vol. 3, pp. 9.PubMed PubMedCentral
    69.Stark, E. and Abeles, M., Predicting movement from multiunit activity, J. Neurosci., 2007, vol. 27, no. 31, p. 8387.CrossRef PubMed
    70.Thelin, J., Jörntell, H., Psouni, E., et al., Implant size and fixation mode strongly influence tissue reactions in the CNS, PLoS One, 2011, vol. 6, no. 1, e16267.CrossRef PubMed PubMedCentral
    71.Bansal, A.K., Truccolo, W., Vargas-Irwin, C.E., and Donoghue, J.P., Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: Spikes, multiunit activity, and local field potentials, J. Neurophysiol., 2012, vol. 107, no. 5, p. 1337.CrossRef PubMed PubMedCentral
    72.Bishop, W., Chestek, C.C., Gilja, V., et al., Self-recalibrating classifiers for intracortical brain-computer interface, J. Neural. Eng., 2014, vol. 11, 026001.CrossRef PubMed PubMedCentral
    73.Homer, M.L., Perge, J.A., Black, M.J., et al., Adaptive offset correction for intracortical brain-computer interfaces, IEEE Trans. Neural. Syst. Rehabil. Eng., 2014, vol. 22, no. 2, p. 239.CrossRef PubMed PubMedCentral
    74.Kao, J.C., Stavisky, S.D., Sussillo, D., et al., Information systems opportunities in brain-machine interface decoders, Proc. IEEE, 2014, vol. 102, no. 5, p. 666.CrossRef
    75.Li, Z., Decoding methods for neural prostheses: where have we reached?, Front. Syst. Neurosci., 2014, vol. 8, art. 129.CrossRef PubMed PubMedCentral
    76.Ward, M.P., Rajdev, P., Ellison, C., and Irazoqui, P.P., Toward a comparison of microelectrodes for acute and chronic recordings, Brain Res., 2009, no. 1282, p. 183.CrossRef PubMed
    77.Cogan, S.F., Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 275.CrossRef PubMed
    78.Tabot, G.A., Dammann, J.F., Berg, J.A., et al., Restoring the sense of touch with a prosthetic hand through a brain interface, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 45, p. 18279.CrossRef PubMed PubMedCentral
    79.O’Doherty, J.E., Lebedev, M.A., Li, Z., and Nicolelis, M.A.L., Virtual active touch using randomly patterned intracortical microstimulation, IEEE Trans. Neural Syst. Rehabil. Eng., 2012, vol. 20, no. 1, p. 85.CrossRef PubMed PubMedCentral
    80.Jorfi, M., Skousen, J.L., Weder, C., and Capadona, J.R., Progress towards biocompatible intracortical microelectrodes for neural interfacing applications, J. Neural Eng., 2015, vol. 12, no. 1, 011001.CrossRef PubMed PubMedCentral
    81.Chen, K.H., Dammann, J.F., Boback, J.L., et al., The effect of chronic intracortical microstimulation on the electrode-tissue interface, J. Neural Eng., 2014, vol. 11, no. 2, 026004.CrossRef PubMed
    82.Walter, A., Murguialday, A.R., Rosenstiel, W., et al., Coupling BCI and cortical stimulation for brain-statedependent stimulation: methods for spectral estimation in the presence of stimulation after-effects, Front. Neural Circuits, 2012, vol. 6, art. 87.CrossRef PubMed PubMedCentral
    83.Klaes, C., Shi, Y., Kellis, S., et al., A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback, J. Neural Eng., 2014, vol. 11, 056024.CrossRef PubMed PubMedCentral
    84.Berg, J.A., Dammann, J.F., Tenore, F.V., et al., Behavioral demonstration of a somatosensory neuroprosthesis, IEEE Trans. Neural. Syst. Rehabil. Eng., 2013, vol. 21, no. 3, p. 500.CrossRef PubMed
    85.Orsborn, A.L. and Carmena, J.M., Creating new functional circuits for action via brain-machine interfaces, Front. Comp. Neurosci., 2013, vol. 7, art. 157.
    86.Kalaska, J.F., From intention to action: motor cortex and the control of reaching movements, Adv. Exp. Med. Biol., 2009, vol. 629, pp. 139.CrossRef PubMed
    87.Ganguly, K. and Carmena, J.M., Emergence of a stable cortical map for neuroprosthetic control, PLoS Biol., 2009, vol. 7, no. 7, e1000153.CrossRef PubMed PubMedCentral
    88.Jarosiewicz, B., Chase, S.M., Fraser, G.W., et al., Functional network reorganization during learning in a brain-computer interface paradigm, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 49, p. 19486.CrossRef PubMed PubMedCentral
  • 作者单位:A. M. Badakva (1)
    N. V. Miller (1)
    L. N. Zobova (2)

    1. Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
    2. Pirogov Russian National Research Medical University, Moscow, 117997, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Life Sciences
    Human Physiology
    Biomedicine
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3164
文摘
During the last two decades, considerable progress has been made in the studies of brain–computer interfaces (BCIs)—devices in which motor signals from the brain are registered by multi-electrode arrays and transformed into commands for artificial actuators such as cursors and robotic devices. This review is focused on one problem. Voluntary motor control is based on neurophysiological processes, which strongly depend on the afferent innervation of skin, muscles, and joints. Thus, invasive BCI has to be based on a bidirectional system in which motor control signals are registered by multichannel microelectrodes implanted in motor areas, whereas tactile, proprioceptive, and other useful signals are transported back to the brain through spatiotemporal patterns of intracortical microstimulation (ICMS) delivered to sensory areas. In general, the studies of invasive BCIs have advanced in several directions. The progress of BCIs with artificial sensory feedback will not only help patients, but will also expand base knowledge in the field of human cortical functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700