Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context
详细信息    查看全文
  • 作者:Jose Dolz ; Anne Laprie ; Soléakhéna Ken…
  • 关键词:Support vector machines ; Machine learning ; Supervised learning ; MRI segmentation ; Radiotherapy ; Brain cancer
  • 刊名:International Journal of Computer Assisted Radiology and Surgery
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:43-51
  • 全文大小:1,360 KB
  • 参考文献:1.Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11. Lyon, France: International Agency for Research on Cancer. http://​globocan.​iarc.​fr . Accessed 16 Dec 2014
    2.Cattaneo GM, Reni M, Rizzo G, Castellone P, Ceresoli GL, Cozzarini C, Ferreri AJ, Passoni P, Calandrino R (2005) Target delineation in post-operative radiotherapy of brain gliomas: interobserver variability and impact of image registration of MR (pre-operative) images on treatment planning CT scans. Radiother Oncol 75(2):217–223CrossRef PubMed
    3.Dolz J, Massoptier L, Vermandel M (2015) Segmentation algorithms of subcortical brain structures on MRI for radiotherapy and radiosurgery: a survey. IRBM. doi:10.​1016/​j.​irbm.​2015.​06.​001
    4.Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, Smith S, Cootes T, Jenkinson M, Rueckert D (2009) An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuroimage 47(4):1435–1447CrossRef PubMed
    5.Bondiau PY, Malandain G, Chanalet S, Marcy PY, Habrand JL, Fauchon F, Paquis P, Courdi A, Commowick O, Rutten I, Ayache N (2005) Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys 61:289–298CrossRef PubMed
    6.Isambert A, Dhermain F, Bidault F, Commowick O, Bondiau PY, Malandain G, Lefkopoulos D (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87:93–99CrossRef PubMed
    7.Toga AW, Thompson PM (2001) The role of image registration in brain mapping. Image Vis Comput 19:3–24PubMedCentral CrossRef PubMed
    8.Lee JD, Tseng YX, Liu LC, Huang CH (2007) A 2-D automatic segmentation scheme for brainstem and cerebellum regions in brain MR imaging. In: Conference proceeding on fuzzy systems and knowledge discovery, vol 4. pp 270–274
    9.Moghaddam MJ, Soltanian-Zadeh H (2009) Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks. In: Prince J, Pham D, Myers K (eds) Information processing in medical imaging. Lecture notes in computer science, vol 5636. Springer, Berlin, Heidelberg, pp 326–337
    10.Kim EY, Johnson H (2010) Multi-structure segmentation of multi-modal brain images using artificial neural networks. In: SPIE medical imaging. International society for optics and photonics, pp 76234B–76234B
    11.Magnotta VA, Heckel D, Andreasen NC, Cizadlo T, Corson PW, Ehrhardt JC, Yuh W (1999) Measurement of brain structures with artificial neural networks: two-and three-dimensional applications 1. Radiology 211(3):781–790CrossRef PubMed
    12.Powell S, Magnotta VA, Johnson H, Jammalamadaka VK, Pierson R, Andreasen NC (2008) Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. Neuroimage 39(1):238–247PubMedCentral CrossRef PubMed
    13.Burges C (1988) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef
    14.Abdi MJ, Hosseini SM, Rezghi M (2012) A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput Math Methods Med 2012. Article Id 320698
    15.Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Tech 2:27:1–27:27CrossRef
    16.Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
  • 作者单位:Jose Dolz (1) (2)
    Anne Laprie (3)
    Soléakhéna Ken (3)
    Henri-Arthur Leroy (2) (4)
    Nicolas Reyns (2) (4)
    Laurent Massoptier (1)
    Maximilien Vermandel (2)

    1. AQUILAB, Biocentre A. Fleming, 250 rue Salvador Allende, 59120, Loos les Lille, France
    2. Univ. Lille, Inserm, CHU Lille, U1189, ONCO-THAI - Image Assisted Laser Therapy for Oncology, 59000, Lille, France
    3. Department of Radiation Oncology, Institut Claudius Regaud, Toulouse, France
    4. Neurosurgery Department, University Hospital Lille, Lille, France
  • 刊物主题:Imaging / Radiology; Surgery; Health Informatics; Computer Imaging, Vision, Pattern Recognition and Graphics; Computer Science, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-6429
文摘
Purpose To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700