Influence of nitrogen and sulfur fertilization on glucosinolate content and composition of horseradish plants harvested at different developmental stages
详细信息    查看全文
  • 作者:Susanna De Maria ; Rosa Agneta ; Filomena Lelario…
  • 关键词:Brassicaceae ; Armoracia rusticana ; Fertilization ; Glucosinolate ; Sinigrin
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 全文大小:539 KB
  • 参考文献:Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochem 77:16–45. doi:10.​1016/​j.​phytochem.​2012.​02.​005 CrossRef
    Agneta R, Rivelli AR, Ventrella E, Lelario F, Sarli G, Bufo SA (2012) Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI–hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation. J Agric Food Chem 60(30):7474–7482. doi:10.​1021/​jf301294h CrossRef PubMed
    Agneta R, Lelario F, De Maria S, Möllers C, Bufo S, Rivelli AR (2014a) Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochem 106:178–187. doi:10.​1016/​j.​phytochem.​2014.​06.​019 CrossRef
    Agneta R, Möllers C, De Maria S, Rivelli AR (2014b) Evaluation of root yield traits and glucosinolate concentration of different Armoracia rusticana accessions in Basilicata region (southern Italy). Sci Hortic 170:249–255. doi:10.​1016/​j.​scienta.​2014.​03.​025 CrossRef
    Alnsour M, Kleinwächter M, Böhme J, Selmar D (2012) Sulfate determines the glucosinolate concentration of horseradish in vitro plants (Armoracia rusticana Gaertn., Mey. & Scherb.). J Sci Food Agric 93(4):918–923. doi:10.​1002/​jsfa.​5825/​full CrossRef PubMed
    Bellostas N, Kachlicki P, Sørensen JC, Sørensen H (2007) Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Sci Hortic 114(4):234–242. doi:10.​1016/​j.​scienta.​2007.​06.​015 CrossRef
    Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Molmann J, Seljasen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochemistry 72(7):538–556. doi:10.​1016/​j.​phytochem.​2011.​01.​014 CrossRef PubMed
    Blazevic I, Mastelic J (2009) Glucosinolates degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113(1):96–102. doi:10.​1016/​j.​foodchem.​2008.​07.​029 CrossRef
    Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62(3):471–481. doi:10.​1016/​S0031-9422(02)00549-6 CrossRef PubMed
    Cartea ME, Velasco P, Obregon S, Padilla G, de Haro A (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69(2):403–410. doi:10.​1016/​j.​phytochem.​2007.​08.​014 CrossRef PubMed
    Chen S, Andreasson E (2001) Update on glucosinolate metabolism and transport. Plant Physiol Biochem 39(9):743–758. doi:10.​1016/​S0981-9428(01)01301-8 CrossRef
    Fahey JW, Zalcman AT, Talalay P (2001) The chemical diversity and distribution of gucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. doi:10.​1016/​S0031-9422(00)00316-2 CrossRef PubMed
    Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9(5):573–581. doi:10.​1055/​s-2007-965431/​abstract CrossRef PubMed
    Groenbäk M, Jensen S, Neugart S, Schreiner M, Kidmose U, Kristensen HL (2014) Influence of cultivar and fertilizer approach on curly kale (Brassica oleracea L. var. sabellica). 1. Genetic diversity reflected in agronomic characteristics and phytochemical concentration. J Agric Food Chem 62(47):11393–11402. doi:10.​1021/​jf503096p CrossRef
    Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59. doi:10.​1270/​jsbbs.​64.​48 CrossRef PubMed PubMedCentral
    Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas—I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201(1):71–89. doi:10.​1023/​A:​1004364713152 CrossRef
    Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in arabidopsis glucosinolate. Plant Phys Accum 126(2):811–825. doi:10.​1104/​pp.​126.​2.​811 CrossRef
    Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8(3):264–271. doi:10.​1016/​j.​pbi.​2005.​03.​002 CrossRef PubMed
    Lelario F, De Maria S, Agneta R, Möllers C, Bufo SA, Rivelli AR (2015) Glucosinolates determination in tissues of horseradish plant. Bio-protocol 5(16):e1562. http://​www.​bio-protocol.​org/​e1562
    Li X, Kushad MM (2004) Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J Agric Food Chem 52(23):6950–6955. doi:10.​1021/​jf0401827 CrossRef PubMed
    Malik MS, Riley MB, Norsworthy JK, Bridges W (2010) Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions. J Agric Food Chem 58(22):11626–11632. doi:10.​1021/​jf102809b CrossRef PubMed
    Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103. doi:10.​1023/​A:​1013330819778 CrossRef
    Omirou MD, Papadopoulou KK, Papastylianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaliotis C (2009) Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J Agric Food Chem 57:9408–9417. doi:10.​1021/​jf901440n CrossRef PubMed
    Omirou M, Papastefanou C, Katsarou D, Papastylianou I, Passam HC, Ehaliotis C, Papadopoulou KK (2012) Relationships between nitrogen, dry matter accumulation and glucosinolates in Eruca sativa Mills. The applicability of the critical NO3-N levels approach. Plant Soil 354:347–358. doi:10.​1007/​s11104-011-1071-9 CrossRef
    Pieroni A, Quave CL (2005) Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 101(1–3):258–270. doi:10.​1016/​j.​jep.​2005.​04.​028 CrossRef PubMed
    Rangkadilok N, Nicolas ME, Bennett NB, Premier RR, Eagling DR, Taylor PWJ (2002) Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Sci Hortic 96(1–4):11–26. doi:10.​1016/​S0304-4238(02)00118-8 CrossRef
    Redovniković IR, Glivetic T, Delonga K, Vorkapic-Furac J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309 (ISSN 0031-5362)
    Rosa EAS, Heaney RKH, Portas CAM, Fenwick GR (1996) Changes in glucosinolates concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons. I J Sci Food Agric 71(11):237–244. doi:10.​1002/​(SICI)1097-0010(199606)71 CrossRef
    Sarli G, Lisi De, Agneta R, Grieco S, Ierardi G, Montemurro F, Negro D, Montesano V (2012) Collecting horseradish (Armoracia rusticana, Brassicaceae): local uses and morphological characterization in Basilicata (Southern Italy). Genet Resour Crop Evol 59(5):889–899. doi:10.​1007/​s10722-011-9730-5 CrossRef
    Schonhof I, Blankenburg D, Muller S, Krumbein A (2007) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170(1):65–72. doi:10.​1002/​jpln.​200620639/​abstract CrossRef
    Thies W (1988) Isolation of sinigrin and glucotropaeolin from cruciferous seeds. Fett Lipid 90(8):311–314. doi:10.​1002/​lipi.​19880900806 CrossRef
    van Dam N, Tytgat T, Kirkegaard J (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8(1):171–186. doi:10.​1007/​s11101-008-9101-9 CrossRef
    Viaud MC, Rollin P, Latxague L, Gardrat C (1992) Synthetic studies on indoleglucosinolates. 1. Synthesis of glucobrassicin and its 4-methoxy and 5-methoxy derivatives. J Chem Res 207:1669–1681
    Walters SA, Wahle EA (2010) Horseradish production in Illinois. Hortic Tecnol 20:267–276
    WedelsbäckBladh K, Olsson KM (2011) Introduction and use of horseradish (Armoracia rusticana) as food and medicine from antiquity to the present: emphasis on the Nordic countries. J Herbs Spices Med Plants 17(3):197–213. doi:10.​1080/​10496475.​2011.​595055 CrossRef
    WedelsbäckBladh K, Olsson K, Yndgaard F (2013) Evaluation of glucosinolates in nordic horseradish (Armoracia rusticana). Bot Lith 19(1):48–56. doi:10.​2478/​botlit-2013-0009
  • 作者单位:Susanna De Maria (1)
    Rosa Agneta (1)
    Filomena Lelario (2)
    Christian Möllers (3)
    Anna Rita Rivelli (1)

    1. School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano, 85100, Potenza, PZ, Italy
    2. Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 85100, Potenza, PZ, Italy
    3. Department of Crop Sciences, Georg-August-Universität Göttingen, Von Siebold-Str. 8, 37075, Göttingen, Germany
  • 刊物主题:Plant Physiology; Plant Genetics & Genomics; Plant Biochemistry; Plant Pathology; Plant Anatomy/Development; Agriculture;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-1664
文摘
Horseradish (Armoracia rusticana) is a rich source of glucosinolates (GLS), a class of secondary metabolites, nitrogen and sulfur compounds found in Brassicaceae family. Variations of content and composition of nine GLS in horseradish plants grown with N alone and N plus S were evaluated in the above- and below-ground portions at different developmental stages. Total GLS concentration was significantly higher in the above-ground tissues compared to the roots (97.8 vs 11.6 µmol g−1 dw); it responded positively to N and S supply in roots (11.5 in N alone and 15.8 µmol g−1 dw in N plus S treatments with respect to 7.4 µmol g−1 dw of the untreated control) without significant variations in the above-ground tissues. In both portions, total GLS concentration showed the greatest values at the beginning of plant regrowth and then decreased throughout the plant development till the end of the growing period. Among classes, the aliphatic GLS were the most abundant accounting for over 73 and 97 % of the total GLS in roots and above-ground tissues, respectively. Whereas, aromatic and indole GLS were present at roughly equivalent levels in both portions. GLS classes varied differently depending on developmental stage and fertilization, showing the highest percentage increase at the beginning of plant regrowth: aliphatic GLS increased by 150 % with N alone and 400 % with N and S supply, while aromatics and indoles increased both up to 35 % with N alone and 280 and 180 % with N and S, respectively. The results suggest that fertilization led to modulate GLS content and composition in plants in relation to a specific employment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700