Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy
详细信息    查看全文
  • 作者:Lingjing Jin (1)
    Zhourui Wu (2)
    Wei Xu (2)
    Xiao Hu (2)
    Jin Zhang (3)
    Zhigang Xue (4)
    Liming Cheng (2)
  • 关键词:Spinal cord injury ; Differentially expressed genes ; Protein–protein interaction network ; Transcription factors ; microRNA
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:41
  • 期:5
  • 页码:3169-3177
  • 全文大小:
  • 参考文献:1. Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23(3-):318-34 CrossRef
    2. Becker D, Sadowsky CL, McDonald JW (2003) Restoring function after spinal cord injury. Neurologist 9(1):1-5 CrossRef
    3. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics and pathophysiology of acute spinal cord injury. Spine 26(24S):S2–S12 CrossRef
    4. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury: results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405-411 CrossRef
    5. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. JAMA 277(20):1597-604 CrossRef
    6. Pereira JE, LsM Costa, AnM Cabrita, Couto PA, VtM Filipe, Magalh?es LG, Fornaro M, Di Scipio F, Geuna S, Maurício AC, Varej?o AS (2009) Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Exp Neurol 220(1):71-1 CrossRef
    7. Breslin K, Agrawal D (2012) The use of methylprednisolone in acute spinal cord injury: a review of the evidence, controversies, and recommendations. Pediatr Emerg Care 28(11):1238-245 CrossRef
    8. Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12(7):465-77 CrossRef
    9. Zanzoni A, Soler-López M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583(11):1759-765 CrossRef
    10. Barab¨¢si A-Ls, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56-8 CrossRef
    11. Ahn Y–Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761-64 CrossRef
    12. Nepusz Ts YuH, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471-72 CrossRef
    13. Palla G, Derényi I, Farkas Is, Vicsek Ts (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814-18 CrossRef
    14. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575-584 CrossRef
    15. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175 CrossRef
    16. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249-64 CrossRef
    17. Da Wei Huang BTS, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44-7 CrossRef
    18. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-0 CrossRef
    19. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol (Methodological) 57(1):289-00
    20. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(suppl 1):D561–D568 CrossRef
    21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498-504 CrossRef
    22. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448-449 CrossRef
    23. Zheng G, Tu K, Yang Q, Xiong Y, Wei C, Xie L, Zhu Y, Li Y (2008) ITFP: an integrated platform of mammalian transcription factors. Bioinformatics 24(20):2416-417 CrossRef
    24. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7 CrossRef
    25. Kelley BG, Mermelstein PG (2011) Progesterone blocks multiple routes of ion flux. Mol Cell Neurosci 48(2):137-41 CrossRef
    26. Ando J, Sugimoto K, Tamayose K, Sasaki M, Ando M, Oshimi K (2008) Changes in cell morphology and cytoskeletal organization are induced by human mitotic checkpoint gene, Bub1. Biochem Biophys Res Commun 365(4):691-97 CrossRef
    27. Kawashima SA, Yamagishi Y, Honda T, Ishiguro K-i, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327(5962):172-77 CrossRef
    28. Eichten A, Adler AP, Cooper B, Griffith J, Wei Y, Yancopoulos GD, Lin HC, Thurston G (2012) Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models. Angiogenesis 16(2):429-41
    29. Kim HM, Hwang DH, Lee JE, Kim SU, Kim BG (2009) Ex vivo VEGF delivery by neural stem cells enhances proliferation of glial progenitors, angiogenesis and tissue sparing after spinal cord injury. PLoS ONE 4(3):e4987 CrossRef
    30. Chang Y-W, Goff LA, Li H, Kane-Goldsmith N, Tzatzalos E, Hart RP, Young W, Grumet M (2009) Rapid induction of genes associated with tissue protection and neural development in contused adult spinal cord after radial glial cell transplantation. J Neurotrauma 26(7):979-93 CrossRef
    31. Hasegawa K, Chang Y-W, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2005) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193(2):394-10 CrossRef
    32. Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, Rowitch D, Bonni A (2009) A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136(2):322-36 CrossRef
    33. Molli PR, Li D-Q, Bagheri-Yarmand R, Pakala SB, Katayama H, Sen S, Iyer J, Chernoff J, Tsai M-Y, Nair SS (2010) Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. J Cell Biol 190(1):101-14 CrossRef
    34. Skinner M (2010) Cell cycle: ARPC1B—a regulator of regulators. Nat Rev Mol Cell Biol 11(8):542-43 CrossRef
    35. Becker-Herman S, Arie G, Medvedovsky H, Kerem A, Shachar I (2005) CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol Biol Cell 16(11):5061-069 CrossRef
    36. Watzka M, Beyenburg S, Blümcke I, Elger CE, Bidlingmaier F, Stoffel-Wagner B (2000) Expression of mineralocorticoid and glucocorticoid receptor mRNA in the human hippocampus. Neurosci Lett 290(2):121-24 CrossRef
    37. Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13 CrossRef
    38. Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa Y-i, Shibasaki F, Matsumoto M, Sakabe T (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130:214-22 CrossRef
    39. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395
    40. Tsume M, Kimura-Yoshida C, Mochida K, Shibukawa Y, Amazaki S, Wada Y, Hiramatsu R, Shimokawa K, Matsuo I (2012) / Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem Biophys Res Commun 425(4):762-68 CrossRef
    41. Pal DK, Evgrafov OV, Tabares P, Zhang F, Durner M, Greenberg DA (2003) BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. AmJ Hum Genet 73(2):261-70 CrossRef
    42. Velí?ek L, Shang E, Velí?ková J, Chachua T, Macchiarulo S, Maglakelidze G, Wolgemuth DJ, Greenberg DA (2011) GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: the role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS One 6(8):e23656 CrossRef
    43. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, Wang Y, Qian Z, Jin J, Zhang Y (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci 104(50):19971-9976 CrossRef
    44. Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R, Harata K, Fujii Y (2009) microRNA expression profile in undifferentiated gastric cancer. Int J Oncol 34(2):537
    45. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6):2456-468 CrossRef
    46. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci 106(29):12085-2090 CrossRef
    47. Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, Perdomo C, Kotton D, Vaziri C, Anderlind C (2010) miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 9(9):1809-818 CrossRef
    48. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2010) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-[alpha]-PU. 1 pathway. Nat Med 17(1):64-0 CrossRef
  • 作者单位:Lingjing Jin (1)
    Zhourui Wu (2)
    Wei Xu (2)
    Xiao Hu (2)
    Jin Zhang (3)
    Zhigang Xue (4)
    Liming Cheng (2)

    1. Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
    2. Department of Spine Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Xin-Cun Road 389, Shanghai, 200065, China
    3. Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
    4. Translational Stem Cell Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
  • ISSN:1573-4978
文摘
Spinal cord injury (SCI) leads to the loss of sensory, motor, and autonomic function. We aimed to identify the therapeutic targets of-SCI by bioinformatics analysis. The gene expression profile of GSE20907 was downloaded from gene expression omnibus database. By comparing gene expression profiles with control samples, we screened out several differentially expressed genes (DEGs) in 3?days, 2?weeks and 1?month post-SCI. The pathway enrichment and protein–protein interaction (PPI) network analysis for the identified DEGs were performed. Then, transcription factors and microRNAs for DEGs were predicted. We found that up-regulated DEGs mainly participated in cell cycle, oxidative phosphorylation and immune-related pathways; while down-regulated DEGs were mainly involved in oxidative phosphorylation and central nervous system disease signaling pathways. In the constructed PPI network, Bub1, Vascular endothelial growth factor, Topoisomerase IIα (TOP2a) and Cdc20 showed better correspondence with cell cycle, repair system and nerve system. Furthermore, the up-regulated genes (Arpc1b, CD74 and Brd2) significantly mapped to the target genes of transcription factors. The down-regulated genes of 3?days post-injury and the up-regulated genes of 2?weeks post-injury were significantly enriched as the target genes of microRNAs (miR-129 and miR-124). In conclusion, our results may provide guidelines to discuss the collaboration of PPI network in carcinogenesis of SCI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700