Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution
详细信息    查看全文
  • 作者:Andrew M Schurko (1)
    John M Logsdon Jr (1)
    Brian D Eads (2)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:9
  • 期:1
  • 全文大小:4453KB
  • 参考文献:1. Stone GN, Atkinson RJ, Rokas A, Aldrey JL, Melika G, Acs Z, Csoka G, Hayward A, Bailey R, Buckee C, / et al.: Evidence for widespread cryptic sexual generations in apparently purely asexual Andricus gallwasps. / Molecular ecology 2008, 17 (2) : 652鈥?65. CrossRef
    2. Lynch M, Burger R, Butcher D, Gabriel W: The mutational meltdown in asexual populations. / The Journal of heredity 1993, 84 (5) : 339鈥?44.
    3. Mallet J: Hybrid speciation. / Nature 2007, 446 (7133) : 279鈥?83. CrossRef
    4. Morgan鈥揜ichards M, Trewick SA: Hybrid origin of a parthenogenetic genus? / Molecular ecology 2005, 14 (7) : 2133鈥?142. CrossRef
    5. Dybdahl MF, Lively CM: Diverse, Endemic and Polyphyletic Clones in Mixed Populations of a Fresh鈥揥ater Snail ( Potamopyrgus antipodarum ). / Journal of Evolutionary Biology 1995, 8 (3) : 385鈥?98. CrossRef
    6. Wallace C: Parthenogenesis, Sex and Chromosomes in Potamopyrgus . / Journal of Molluscan Studies 1992, 58: 93鈥?07. CrossRef
    7. Ferree PM, McDonald K, Fasulo B, Sullivan W: The origin of centrosomes in parthenogenetic hymenopteran insects. / Curr Biol 2006, 16 (8) : 801鈥?07. CrossRef
    8. Riparbelli MG, Tagu D, Bonhomme J, Callaini G: Aster self鈥搊rganization at meiosis: a conserved mechanism in insect parthenogenesis? / Developmental biology 2005, 278 (1) : 220鈥?30. CrossRef
    9. Suomalainen E, Saura A, Lokki J: Cytology and Evolution in Parthenogenesis. Boca Raton, FL: CRC Press 1987.
    10. Gorr TA, Rider CV, Wang HY, Olmstead AW, LeBlanc GA: A candidate juvenoid hormone receptor cis鈥揺lement in the Daphnia magna hb2 hemoglobin gene promoter. / Molecular and cellular endocrinology 2006, 247 (1鈥?) : 91鈥?02. CrossRef
    11. Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T: Juvenile hormone agonists affect the occurrence of male Daphnia. / Chemosphere 2003, 53 (8) : 827鈥?33. CrossRef
    12. Hebert PD: Genotypic characteristics of cyclic parthenogens and their obligately asexual derivatives. / Experientia Suppl 1987, 55: 175鈥?95.
    13. Zaffagnini F, Sabelli B: Karyologic observations on the maturation of the summer and winter eggs of Daphnia pulex and Daphnia middendorffiana. / Chromosoma 1972, 36 (2) : 193鈥?03. CrossRef
    14. Lumer H: Growth and maturation in the parthenogenetic eggs of Daphnia magna Strauss. / Cytologia 1937, 8: 1鈥?4.
    15. Zaffagnini F: Reproduction in Daphnia . / Memoirie Instituto Italiano Idrobiologia 1987, 45: 245鈥?84.
    16. Omilian AR, Cristescu ME, Dudycha JL, Lynch M: Ameiotic recombination in asexual lineages of Daphnia. / Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (49) : 18638鈥?8643. CrossRef
    17. Colbourne JK, Wilson CC, Hebert PDN: The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): a shared phylogenetic history transformed by habitat specific rates of evolution. / Biological Journal of the Linnean Society 2006, 89: 469鈥?88. CrossRef
    18. Paland S, Lynch M: Transitions to asexuality result in excess amino acid substitutions. / Science 2006, 311 (5763) : 990鈥?92. CrossRef
    19. Lynch M, Seyfert A, Eads B, Williams E: Marker鈥揵ased analysis of the genetic determinants of meiosis suppression in Daphnia pulex . / Genetics 2008, 180: 317鈥?27. CrossRef
    20. Cohen PE, Pollack SE, Pollard JW: Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. / Endocrine reviews 2006, 27 (4) : 398鈥?26. CrossRef
    21. Nasmyth K: Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. / Annu Rev Genet 2001, 35: 673鈥?45. CrossRef
    22. Gerton JL, Hawley RS: Homologous chromosome interactions in meiosis: diversity amidst conservation. / Nature reviews 2005, 6 (6) : 477鈥?87.
    23. Hauf S, Watanabe Y: Kinetochore orientation in mitosis and meiosis. / Cell 2004, 119 (3) : 317鈥?27. CrossRef
    24. Petronczki M, Matos J, Mori S, Gregan J, Bogdanova A, Schwickart M, Mechtler K, Shirahige K, Zachariae W, Nasmyth K: Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. / Cell 2006, 126 (6) : 1049鈥?064. CrossRef
    25. Watanabe Y, Nurse P: Cohesin Rec8 is required for reductional chromosome segregation at meiosis. / Nature 1999, 400 (6743) : 461鈥?64. CrossRef
    26. FlyBase [http://flybase.org]
    27. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA鈥揼enerating loci as master regulators of transposon activity in Drosophila. / Cell 2007, 128 (6) : 1089鈥?103. CrossRef
    28. Aravin AA, Hannon GJ, Brennecke J: The Piwi鈥損iRNA pathway provides an adaptive defense in the transposon arms race. / Science 2007, 318 (5851) : 761鈥?64. CrossRef
    29. Klattenhoff C, Theurkauf W: Biogenesis and germline functions of piRNAs. / Development (Cambridge, England) 2008, 135 (1) : 3鈥?.
    30. Kishimoto T: Cell鈥揷ycle control during meiotic maturation. / Current opinion in cell biology 2003, 15 (6) : 654鈥?63. CrossRef
    31. Marston AL, Amon A: Meiosis: cell鈥揷ycle controls shuffle and deal. / Nat Rev Mol Cell Biol 2004, 5 (12) : 983鈥?97. CrossRef
    32. Morris JZ, Hong A, Lilly MA, Lehmann R: twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis. / Development (Cambridge, England) 2005, 132 (6) : 1165鈥?174.
    33. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG: Minireview: Cyclin D1: normal and abnormal functions. / Endocrinology 2004, 145 (12) : 5439鈥?447. CrossRef
    34. Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P: Kinase鈥搃ndependent function of cyclin E. / Molecular cell 2007, 25 (1) : 127鈥?39. CrossRef
    35. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M: Cyclin鈥揹ependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. / Nature genetics 2003, 35 (1) : 25鈥?1. CrossRef
    36. Malumbres M, Barbacid M: Mammalian cyclin鈥揹ependent kinases. / Trends in biochemical sciences 2005, 30 (11) : 630鈥?41. CrossRef
    37. Kasten M, Giordano A: Cdk10, a Cdc2鈥搑elated kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. / Oncogene 2001, 20 (15) : 1832鈥?838. CrossRef
    38. Cohen鈥揊ix O: Meiosis: polo, FEAR and the art of dividing reductionally. / Curr Biol 2003, 13 (15) : R603鈥?05. CrossRef
    39. Nasmyth K, Haering CH: The structure and function of SMC and kleisin complexes. / Annual review of biochemistry 2005, 74: 595鈥?48. CrossRef
    40. Guacci V: Sister chromatid cohesion: the cohesin cleavage model does not ring true. / Genes Cells 2007, 12 (6) : 693鈥?08.
    41. Bell SP, Dutta A: DNA replication in eukaryotic cells. / Annual review of biochemistry 2002, 71: 333鈥?74. CrossRef
    42. Forsburg SL: Eukaryotic MCM proteins: beyond replication initiation. / Microbiol Mol Biol Rev 2004, 68 (1) : 109鈥?31. CrossRef
    43. Maiorano D, Cuvier O, Danis E, Mechali M: MCM8 is an MCM2鈥?鈥搑elated protein that functions as a DNA helicase during replication elongation and not initiation. / Cell 2005, 120 (3) : 315鈥?28. CrossRef
    44. Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J: REC, Drosophila MCM8, drives formation of meiotic crossovers. / PLoS genetics 2005, 1 (3) : e40. CrossRef
    45. Lutzmann M, Maiorano D, Mechali M: Identification of full genes and proteins of MCM9, a novel, vertebrate鈥搒pecific member of the MCM2鈥? protein family. / Gene 2005, 362: 51鈥?6. CrossRef
    46. Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU: Requirement of mammalian Timeless for circadian rhythmicity. / Science 2003, 302 (5644) : 439鈥?42. CrossRef
    47. Gotter AL: A Timeless debate: resolving TIM's noncircadian roles with possible clock function. / Neuroreport 2006, 17 (12) : 1229鈥?233. CrossRef
    48. Chan RC, Chan A, Jeon M, Wu TF, Pasqualone D, Rougvie AE, Meyer BJ: Chromosome cohesion is regulated by a clock gene paralogue TIM鈥?. / Nature 2003, 423 (6943) : 1002鈥?009. CrossRef
    49. Gotter AL, Suppa C, Emanuel BS: Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork鈥揳ssociated factors. / Journal of molecular biology 2007, 366 (1) : 36鈥?2. CrossRef
    50. Cobb JA, Bjergbaek L: RecQ helicases: lessons from model organisms. / Nucleic acids research 2006, 34 (15) : 4106鈥?114. CrossRef
    51. Wu L, Hickson ID: DNA helicases required for homologous recombination and repair of damaged replication forks. / Annu Rev Genet 2006, 40: 279鈥?06. CrossRef
    52. Brosh RM Jr, Bohr VA: Human premature aging, DNA repair and RecQ helicases. / Nucleic acids research 2007, 35 (22) : 7527鈥?544. CrossRef
    53. Hickson ID: RecQ helicases: caretakers of the genome. / Nat Rev Cancer 2003, 3 (3) : 169鈥?78. CrossRef
    54. Plank JL, Wu J, Hsieh TS: Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. / Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (30) : 11118鈥?1123. CrossRef
    55. Rockmill B, Fung JC, Branda SS, Roeder GS: The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. / Curr Biol 2003, 13 (22) : 1954鈥?962. CrossRef
    56. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B: The time course and chromosomal localization of recombination鈥搑elated proteins at meiosis in the mouse are compatible with models that can resolve the early DNA鈥揇NA interactions without reciprocal recombination. / Journal of cell science 2002, 115 (Pt 8) : 1611鈥?622.
    57. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H: A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self鈥搑enewal. / Genes & development 1998, 12 (23) : 3715鈥?727. CrossRef
    58. Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N: A Germ Cell Specific Gene of the ARGONAUTE Family Is Essential for the Progression of Premeiotic Mitosis and Meiosis during Sporogenesis in Rice. / The Plant cell 2007, 19 (8) : 2583鈥?594. CrossRef
    59. Ramesh MA, Malik SB, Logsdon JM Jr: A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. / Curr Biol 2005, 15 (2) : 185鈥?91.
    60. Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W, Shirahige K, Nasmyth K: Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. / Cell 2006, 127 (3) : 523鈥?37. CrossRef
    61. Kitajima TS, Yokobayashi S, Yamamoto M, Watanabe Y: Distinct cohesin complexes organize meiotic chromosome domains. / Science 2003, 300 (5622) : 1152鈥?155. CrossRef
    62. Thomas SE, Soltani鈥揃ejnood M, Roth P, Dorn R, Logsdon JM Jr, McKee BD: Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. / Cell 2005, 123 (4) : 555鈥?68. CrossRef
    63. Strom L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjogren C: Postreplicative formation of cohesion is required for repair and induced by a single DNA break. / Science 2007, 317 (5835) : 242鈥?45. CrossRef
    64. Unal E, Heidinger鈥揚auli JM, Koshland D: DNA double鈥搒trand breaks trigger genome鈥搘ide sister鈥揷hromatid cohesion through Eco1 (Ctf7). / Science 2007, 317 (5835) : 245鈥?48. CrossRef
    65. Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA, Peters JM: The dissociation of cohesin from chromosomes in prophase is regulated by Polo鈥搇ike kinase. / Molecular cell 2002, 9 (3) : 515鈥?25. CrossRef
    66. Losada A, Hirano M, Hirano T: Cohesin release is required for sister chromatid resolution, but not for condensin鈥搈ediated compaction, at the onset of mitosis. / Genes & development 2002, 16 (23) : 3004鈥?016. CrossRef
    67. Katis VL, Matos J, Mori S, Shirahige K, Zachariae W, Nasmyth K: Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. / Curr Biol 2004, 14 (24) : 2183鈥?196. CrossRef
    68. Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y: Shugoshin collaborates with protein phosphatase 2A to protect cohesin. / Nature 2006, 441 (7089) : 46鈥?2. CrossRef
    69. Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y: Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. / The Journal of cell biology 2006, 174 (4) : 499鈥?08. CrossRef
    70. De Piccoli G, Cortes鈥揕edesma F, Ira G, Torres鈥揜osell J, Uhle S, Farmer S, Hwang JY, Machin F, Ceschia A, McAleenan A, / et al.: Smc5鈥揝mc6 mediate DNA double鈥搒trand鈥揵reak repair by promoting sister鈥揷hromatid recombination. / Nature cell biology 2006, 8 (9) : 1032鈥?034. CrossRef
    71. Torres鈥揜osell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert鈥揃oulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M: The Smc5鈥揝mc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. / Nature cell biology 2007, 9 (8) : 923鈥?31. CrossRef
    72. Losada A, Hirano T: Dynamic molecular linkers of the genome: the first decade of SMC proteins. / Genes & development 2005, 19 (11) : 1269鈥?287. CrossRef
    73. Hirano T: Condensins: organizing and segregating the genome. / Curr Biol 2005, 15 (7) : R265鈥?75. CrossRef
    74. Cobbe N, Heck MM: The evolution of SMC proteins: phylogenetic analysis and structural implications. / Molecular biology and evolution 2004, 21 (2) : 332鈥?47. CrossRef
    75. Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R: Novel meiosis鈥搒pecific isoform of mammalian SMC1. / Molecular and cellular biology 2001, 21 (20) : 6984鈥?998. CrossRef
    76. Pezzi N, Prieto I, Kremer L, Perez Jurado LA, Valero C, Del Mazo J, Martinez AC, Barbero JL: STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3鈥搑elated genes flanking the Williams鈥揃euren syndrome deletion. / Faseb J 2000, 14 (3) : 581鈥?92.
    77. Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P: An atypical topoisomerase II from Archaea with implications for meiotic recombination. / Nature 1997, 386 (6623) : 414鈥?17. CrossRef
    78. Keeney S, Giroux CN, Kleckner N: Meiosis鈥搒pecific DNA double鈥搒trand breaks are catalyzed by Spo11, a member of a widely conserved protein family. / Cell 1997, 88 (3) : 375鈥?84. CrossRef
    79. Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM Jr: Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage鈥搒pecific loss. / Molecular biology and evolution 2007, 24 (12) : 2827鈥?841. CrossRef
    80. Bishop DK, Park D, Xu L, Kleckner N: DMC1: a meiosis鈥搒pecific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. / Cell 1992, 69 (3) : 439鈥?56. CrossRef
    81. Shinohara A, Ogawa H, Ogawa T: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA鈥搇ike protein. / Cell 1992, 69 (3) : 457鈥?70. CrossRef
    82. Masson JY, West SC: The Rad51 and Dmc1 recombinases: a non鈥搃dentical twin relationship. / Trends in biochemical sciences 2001, 26 (2) : 131鈥?36. CrossRef
    83. Shinohara A, Shinohara M: Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. / Cytogenetic and genome research 2004, 107 (3鈥?) : 201鈥?07. CrossRef
    84. Bishop DK: RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. / Cell 1994, 79 (6) : 1081鈥?092. CrossRef
    85. Tarsounas M, Morita T, Pearlman RE, Moens PB: RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. / The Journal of cell biology 1999, 147 (2) : 207鈥?20. CrossRef
    86. Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini鈥揙tero RD: The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. / Nature structural & molecular biology 2005, 12 (5) : 449鈥?53. CrossRef
    87. Pezza RJ, Voloshin ON, Vanevski F, Camerini鈥揙tero RD: Hop2/Mnd1 acts on two critical steps in Dmc1鈥損romoted homologous pairing. / Genes & development 2007, 21 (14) : 1758鈥?766. CrossRef
    88. Petukhova G, Sung P, Klein H: Promotion of Rad51鈥揹ependent D鈥搇oop formation by yeast recombination factor Rdh54/Tid1. / Genes & development 2000, 14 (17) : 2206鈥?215. CrossRef
    89. Shinohara M, Gasior SL, Bishop DK, Shinohara A: Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. / Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (20) : 10814鈥?0819. CrossRef
    90. Sarai N, Kagawa W, Kinebuchi T, Kagawa A, Tanaka K, Miyagawa K, Ikawa S, Shibata T, Kurumizaka H, Yokoyama S: Stimulation of Dmc1鈥搈ediated DNA strand exchange by the human Rad54B protein. / Nucleic acids research 2006, 34 (16) : 4429鈥?437. CrossRef
    91. Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, / et al.: Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. / Molecular and cellular biology 2006, 26 (3) : 976鈥?89. CrossRef
    92. Petukhova GV, Romanienko PJ, Camerini鈥揙tero RD: The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. / Developmental cell 2003, 5 (6) : 927鈥?36. CrossRef
    93. Zierhut C, Berlinger M, Rupp C, Shinohara A, Klein F: Mnd1 is required for meiotic interhomolog repair. / Curr Biol 2004, 14 (9) : 752鈥?62. CrossRef
    94. wFleaBase: Daphnia waterflea genome database [http://wFleaBase.org]
    95. Stassen NY, Logsdon JM Jr, Vora GJ, Offenberg HH, Palmer JD, Zolan ME: Isolation and characterization of rad51 orthologs from Coprinus cinereus and Lycopersicon esculentum, and phylogenetic analysis of eukaryotic recA homologs. / Current genetics 1997, 31 (2) : 144鈥?57. CrossRef
    96. Lin Z, Kong H, Nei M, Ma H: Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. / Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (27) : 10328鈥?0333. CrossRef
    97. Jiricny J: The multifaceted mismatch鈥搑epair system. / Nat Rev Mol Cell Biol 2006, 7 (5) : 335鈥?46. CrossRef
    98. Snowden T, Acharya S, Butz C, Berardini M, Fishel R: hMSH4鈥揾MSH5 recognizes Holliday Junctions and forms a meiosis鈥搒pecific sliding clamp that embraces homologous chromosomes. / Molecular cell 2004, 15 (3) : 437鈥?51. CrossRef
    99. Neyton S, Lespinasse F, Moens PB, Paul R, Gaudray P, Paquis鈥揊lucklinger V, Santucci鈥揇armanin S: Association between MSH4 (MutS homologue 4) and the DNA strand鈥揺xchange RAD51 and DMC1 proteins during mammalian meiosis. / Molecular human reproduction 2004, 10 (12) : 917鈥?24. CrossRef
    100. Lin Z, Nei M, Ma H: The origins and early evolution of DNA mismatch repair genes 鈥?multiple horizontal gene transfers and co鈥揺volution. / Nucleic acids research 2007, 35 (22) : 7591鈥?603. CrossRef
    101. Culligan KM, Meyer鈥揋auen G, Lyons鈥揥eiler J, Hays JB: Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. / Nucleic acids research 2000, 28 (2) : 463鈥?71. CrossRef
    102. Wang TF, Kleckner N, Hunter N: Functional specificity of MutL homologs in yeast: evidence for three Mlh1鈥揵ased heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. / Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (24) : 13914鈥?3919. CrossRef
    103. Raschle M, Marra G, Nystrom鈥揕ahti M, Schar P, Jiricny J: Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1. / The Journal of biological chemistry 1999, 274 (45) : 32368鈥?2375. CrossRef
    104. Li GM, Modrich P: Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. / Proceedings of the National Academy of Sciences of the United States of America 1995, 92 (6) : 1950鈥?954. CrossRef
    105. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, / et al.: Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. / Nature genetics 1996, 13 (3) : 336鈥?42. CrossRef
    106. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED, / et al.: Meiotic arrest and aneuploidy in MLH3鈥揹eficient mice. / Nature genetics 2002, 31 (4) : 385鈥?90.
    107. Santucci鈥揇armanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis鈥揊lucklinger V: The DNA mismatch鈥搑epair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. / Human molecular genetics 2002, 11 (15) : 1697鈥?706. CrossRef
    108. Cannavo E, Marra G, Sabates鈥揃ellver J, Menigatti M, Lipkin SM, Fischer F, Cejka P, Jiricny J: Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. / Cancer research 2005, 65 (23) : 10759鈥?0766. CrossRef
    109. Chen PC, Dudley S, Hagen W, Dizon D, Paxton L, Reichow D, Yoon SR, Yang K, Arnheim N, Liskay RM, / et al.: Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. / Cancer research 2005, 65 (19) : 8662鈥?670. CrossRef
    110. Pasierbek P, Fodermayr M, Jantsch V, Jantsch M, Schweizer D, Loidl J: The Caenorhabditis elegans SCC鈥? homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. / Experimental cell research 2003, 289 (2) : 245鈥?55. CrossRef
    111. Yokobayashi S, Yamamoto M, Watanabe Y: Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. / Molecular and cellular biology 2003, 23 (11) : 3965鈥?973. CrossRef
    112. Taylor D, Crease TJ, Brown WM: Phylogenetic evidence for a single long鈥搇ived clade of crustacean cyclic parthenogens and its implications for the evolution of sex. / Proc R Soc Lond B 1999, (266) : 791鈥?99.
    113. JGI: Joint Genome Institute [http://www.jgi.doe.gov/Daphnia]
    114. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. / Nucleic acids research 2003, 31 (13) : 3497鈥?500. CrossRef
    115. Maddison DR, Maddison WP: MacClade 4.0: Software and manual on CD鈥揜OM. Analysis of phylogeny and character evolution, version 4. Sunderland, MA: Sinauer Associates 2001.
    116. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. / Bioinformatics (Oxford, England) 2003, 19 (12) : 1572鈥?574. CrossRef
    117. Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum鈥搇ikelihood approach. / Mol Biol Evol 2001, 18 (5) : 691鈥?99.
  • 作者单位:Andrew M Schurko (1)
    John M Logsdon Jr (1)
    Brian D Eads (2)

    1. Roy J Carver Center for Comparative Genomics and Department of Biology, The University of Iowa, Iowa City, Iowa, 52242, USA
    2. The Center for Genomics and Bioinformatics and Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
文摘
Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700