The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae
详细信息    查看全文
  • 作者:Judith Rumin (1)
    Hubert Bonnefond (2)
    Bruno Saint-Jean (1)
    Catherine Rouxel (1)
    Antoine Sciandra (2)
    Olivier Bernard (3)
    Jean-Paul Cadoret (1)
    Ga毛l Bougaran (1)

    1. IFREMER
    ; PBA ; 44311 ; Nantes ; France
    2. CNRS-UMPC
    ; LOV UMR 7093 ; 06230 ; Villefranche-sur-mer ; France
    3. INRIA BIOCORE
    ; 06902 ; Sophia Antipolis ; Cedex ; France
  • 关键词:Nile red ; BODIPY 505/515 ; Microalgae ; Neutral lipid ; Fluorescence ; Biodiesel
  • 刊名:Biotechnology for Biofuels
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:1,266 KB
  • 参考文献:1. Chisti, Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: pp. 294-306
    2. Wijffels, RH, Barbosa, MJ (2010) An outlook on microalgal biofuels. Science 329: pp. 796-9
    3. Chac贸n-Lee, TL, Gonz谩lez-Mari帽o, GE (2010) Microalgae for 鈥渉ealthy鈥?foods - possibilities and challenges. Compr Rev Food Sci Food Saf 9: pp. 655-75
    4. Daroch, M, Geng, S, Wang, G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102: pp. 1371-81
    5. Hu, Q, Sommerfeld, M, Jarvis, E, Ghirardi, M, Posewitz, M, Seibert, M (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54: pp. 621-39
    6. Konur, O (2011) The scientometric evaluation of the research on the algae and bio-energy. Appl Energy 88: pp. 3532-40
    7. Pragya, N, Pandey, KK, Sahoo, PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev 24: pp. 159-71
    8. Singh, J, Gu, S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14: pp. 2596-610
    9. Cadoret, J-P, Bernard, O (2008) La production de biocarburant lipidique avec des microalgues : promesses et d茅fis. J Soc Biol 202: pp. 201-11
    10. Chisti, Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167: pp. 201-14
    11. Montagne, X, Porot, P, Aymard, C, Querleu, C, Bouter, A, Lorne, D (2013) Algogroup: towards a shared vision of the possible deployment of algae to biofuels. Oil Gas Sci Technol 68: pp. 875-98
    12. R铆os, SD, Torres, CM, Torras, C, Salvad贸, J, Mateo-Sanz, JM, Jim茅nez, L (2013) Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresour Technol 136: pp. 617-25
    13. Han, Y, Wen, Q, Chen, Z, Li, P (2011) Review of methods used for microalgal lipid-content analysis. Energy Procedia 12: pp. 944-50
    14. Bligh, EG, Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: pp. 911-7
    15. Folch, J, Lee, M, Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: pp. 497-509
    16. Eltgroth, ML, Watwood, RL, Wolfe, GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41: pp. 1000-9
    17. Jara, A, Mendoza, H, Martel, A, Molina, C, Nordstron, L, Rosa, V (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15: pp. 433-8
    18. Lee, SJ, Yoon, B-D, Oh, H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12: pp. 553-6
    19. Cooksey, KE, Guckert, JB, Williams, SA, Callis, PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods 6: pp. 333-45
    20. Cooper, MS, Hardin, WR, Petersen, TW, Cattolico, RA (2010) Visualizing 鈥済reen oil鈥?in live algal cells. J Biosci Bioeng 109: pp. 198-201
    21. Mutanda, T, Ramesh, D, Karthikeyan, S, Kumari, S, Anandraj, A, Bux, F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102: pp. 57-70
    22. Chisti, Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26: pp. 126-31
    23. Elsey, D, Jameson, D, Raleigh, B, Cooney, MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68: pp. 639-42
    24. Huang, G-H, Chen, G, Chen, F (2009) Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy 33: pp. 1386-92
    25. Govender, T, Ramanna, L, Rawat, I, Bux, F (2012) BODIPY staining, an alternative to the Nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 91: pp. 321-8
    26. Smith, JL (1908) On the simultaneous staining of neutral fat and fatty acid by oxazine dyes. J Pathol Bacteriol 12: pp. 1-4
    27. Lison, L (1935) Sur le m茅canisme et la signification de la coloration des lipides par le bleu de Nil. Bull Histol Appl 12: pp. 279-89
    28. Menschik, Z (2009) Nile blue histochemical method for phospholipids. Biotech Histochem 28: pp. 13-8
    29. Vergara, J (1978) Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions. J Gen Physiol 72: pp. 775-800
    30. Cleine, JH, Dixon, KE (1985) The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis. J Embryol Exp Morphol 90: pp. 79-99
    31. Dale, L, Smith, JC, Slack, JMW (1985) Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morphol 89: pp. 289-312
    32. Fowler, SD, Greenspan, P (1985) Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 33: pp. 833-6
    33. Greenspan, P, Mayer, EP, Fowler, SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100: pp. 965-73
    34. Greenspan, P, Fowler, SD (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26: pp. 781-9
    35. Ira, KG (2001) Probing the link between proton transport and water content in lipid membranes. J Phys Chem B 105: pp. 1484-8
    36. Sackett, DL, Wolff, J (1987) Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem 167: pp. 228-34
    37. Ruvinov, S, Yang, X, Parris, K, Banik, U, Ahmed, S, Miles, E (1995) Ligand-mediated changes in the tryptophan synthase indole tunnel probed. J Biol Chem 270: pp. 6357-69
    38. Kimura, K, Yamaoka, M, Kamisaka, Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56: pp. 331-8
    39. Chen, W, Zhang, C, Song, L, Sommerfeld, M, Hu, Q (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77: pp. 41-7
    40. Guzm谩n, HM, Valido, A, La, J, Duarte, LC, Presmanes, KF (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult Int 18: pp. 189-99
    41. Simionato, D, Sforza, E, Corteggiani Carpinelli, E, Bertucco, A, Giacometti, GM, Morosinotto, T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102: pp. 6026-32
    42. Bougaran, G, Rouxel, C, Dubois, N, Kaas, R, Grouas, S, Lukomska, E (2012) Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnol Bioeng 109: pp. 2737-45
    43. Pereira, H, Barreira, L, Mozes, A, Florindo, C, Polo, C, Duarte, CV (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4: pp. 61
    44. Wong, DM, Franz, AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. J Microbiol Methods 95: pp. 122-8
    45. Velmurugan, N, Sung, M, Yim, SS, Park, MS, Yang, JW, Jeong, KJ (2013) Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresour Technol 138: pp. 30-7
    46. Mou, S, Xu, D, Ye, N, Zhang, X, Liang, C, Liang, Q (2012) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. J Appl Phycol 24: pp. 1169-76
    47. Guzm谩n, HM, Valido, A, La, J, Presmanes, KF, Duarte, LC (2012) Quick estimation of intraspecific variation of fatty acid composition in Dunaliella salina using flow cytometry and Nile red. J Appl Phycol 24: pp. 1237-43
    48. Brennan, L, Blanco Fern谩ndez, A, Mostaert, AS, Owende, P (2012) Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Methods 90: pp. 137-43
    49. Cirulis, JT, Strasser, BC, Scott, JA, Ross, GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81A: pp. 618-26
    50. Vigeolas, H, Duby, F, Kaymak, E, Niessen, G, Motte, P, Franck, F (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162: pp. 3-12
    51. Chen, Z, Gong, Y, Fang, X, Hu, H (2012) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28: pp. 3219-25
    52. Gardner, RD, Cooksey, KE, Mus, F, Macur, R, Moll, K, Eustance, E (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24: pp. 1311-20
    53. Ren, H-Y, Liu, B-F, Ma, C, Zhao, L, Ren, N-Q (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6: pp. 143
    54. Hu, G, Fan, Y, Zhang, L, Yuan, C, Wang, J, Li, W (2013) Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp mutant induced by heavy carbon ions. PLoS ONE 8: pp. e60700
    55. Roleda, MY, Slocombe, SP, Leakey, RJG, Day, JG, Bell, EM, Stanley, MS (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129: pp. 439-49
    56. Doan, T-TY, Obbard, JP (2011) Improved Nile red staining of Nannochloropsis sp. J Appl Phycol 23: pp. 895-901
    57. Feng, G-D, Zhang, F, Cheng, L-H, Xu, X-H, Zhang, L, Chen, H-L (2013) Evaluation of FT-IR and Nile red methods for microalgal lipid characterization and biomass composition determination. Bioresour Technol 128: pp. 107-12
    58. Doan, T-TY, Obbard, JP (2011) Enhanced lipid production in Nannochloropsis sp. using fluorescence-activated cell sorting. GCB Bioenergy 3: pp. 264-70
    59. Doan, TTY, Obbard, JP (2012) Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 1: pp. 17-21
    60. Montero, MF, Aristizabal, M, Garcia, RG (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23: pp. 1053-7
    61. Xu, D, Gao, Z, Li, F, Fan, X, Zhang, X, Ye, N (2013) Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresour Technol 127: pp. 386-90
    62. Guzm谩n, HM, Valido, A, La, J, Duarte, LC, Presmanes, KF (2011) Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J Appl Phycol 23: pp. 7-15
    63. Lacour T. Influence du statut azot茅 et du cycle lumineux diurne sur le m茅tabolisme lipidique d鈥橧sochrysis sp. (Haptophyceae). PhD thesis. Aix Marseille 2; 2010.
    64. Hoz, SH, Ayidzoe, W, Ben-Zvi, A, Burrell, RE, McCaffrey, WC (2012) Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures. Algal Res 1: pp. 176-84
    65. Isleten-Hosoglu, M, Gultepe, I, Elibol, M (2012) Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J 61: pp. 11-9
    66. Su, L-C, Hsu, Y-H, Wang, H-Y (2012) Enhanced labeling of microalgae cellular lipids by application of an electric field generated by alternating current. Bioresour Technol 111: pp. 323-7
    67. Loudet, A, Burgess, K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107: pp. 4891-932
    68. Elle, IC, Olsen, LCB, Pultz, D, R酶dk忙r, SV, F忙rgeman, NJ (2010) Something worth dyeing for: molecular tools for the dissection of lipid metabolism in Caenorhabditis elegans. FEBS Lett 584: pp. 2183-93
    69. Gocze, PM, Freeman, DA (1994) Factors underlying the variability of lipid droplet fluorescence in MA-10 Leydig tumor cells. Cytometry 17: pp. 151-8
    70. Listenberger LL, Brown DA. Fluorescent detection of lipid droplets and associated proteins. In Current Protocols in Cell Biology. John Wiley & Sons, Inc.; 2007.
    71. Cooper, MS, D鈥橝mico, LA, Henry, CA (1999) Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol 59: pp. 179-204
    72. Gottardi, A, Vinciguerra, M, Sgroi, A, Moukil, M, Ravier-Dall鈥橝ntonia, F, Pazienza, V (2007) Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Invest 87: pp. 792-806
    73. Greenspan, P, Mayer, E, Fowler, S (1984) Use of Nile red in fluorescence microscopy and flow cytometer analysis. J Cell Biol 99: pp. A58-8
    74. Ghoneim, N (2000) Photophysics of Nile red in solution: steady state spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 56: pp. 1003-10
    75. Alonzo, F, Mayzaud, P (1999) Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red. Mar Chem 67: pp. 289-301
    76. Dutta, AK, Kamada, K, Ohta, K (1996) Spectroscopic studies of Nile red in organic solvents and polymers. J Photochem Photobiol, A: Chemistry 93: pp. 57-64
    77. Brown, WJ, Sullivan, TR, Greenspan, P (1992) Nile red staining of lysosomal phospholipid inclusions. Histochemistry 97: pp. 349-54
    78. O鈥橰ourke, EJ, Soukas, AA, Carr, CE, Ruvkun, G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10: pp. 430-5
    79. Mendoza H, de la Jara A, Freijanes K, Carmona L, Ramos AA, de Sousa DV, et al. Characterization of Dunaliella salina strains by flow cytometry: a new approach to select carotenoid hyperproducing strains. Electronic Journal of Biotechnology. 2008;11.
    80. Wolfrum, E, Laurens, L (2012) Rapid compositional analysis of microalgae by NIR spectroscopy. NIR News 23: pp. 9
    81. Diaz, G, Melis, M, Batetta, B, Angius, F, Falchi, AM (2008) Hydrophobic characterization of intracellular lipids in situ by Nile red red/yellow emission ratio. Micron 39: pp. 819-24
    82. Castell, LL, Mann, R (1994) Optimal staining of lipids in bivalve larvae with Nile red. Aquaculture 119: pp. 89-100
    83. Lakowicz J, editor. Quenching of fluorescence. In: Principles of Fluorescence Spectroscopy. US New York: Springer; 2006:277鈥?30.
    84. Pick, U, Rachutin-Zalogin, T (2012) Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods 88: pp. 189-96
    85. Suman, K, Kiran, T, Devi, UK, Sarma, NS (2012) Culture medium optimization and lipid profiling of Cylindrotheca, a lipid- and polyunsaturated fatty acid-rich pennate diatom and potential source of eicosapentaenoic acid. Botanica Marina 55: pp. 289-99
    86. Priscu, JC, Priscu, LR, Palmisano, AC, Sullivan, CW (1990) Estimation of neutral lipid levels in Antarctic sea ice microalgae by Nile red fluorescence. Antarctic Science 2: pp. 149-55
    87. Vines, A, McBean, GJ, Blanco-Fern谩ndez, A (2010) A flow-cytometric method for continuous measurement of intracellular Ca2+ concentration. Cytometry A 77A: pp. 1091-7
    88. Davis, RW, Volponi, JV, Jones, HDT, Carvalho, BJ, Wu, H, Singh, S (2012) Multiplex fluorometric assessment of nutrient limitation as a strategy for enhanced lipid enrichment and harvesting of Neochloris oleoabundans. Biotechnol Bioeng 109: pp. 2503-12
    89. Bertozzini, E, Galluzzi, L, Penna, A, Magnani, M (2011) Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods 87: pp. 17-23
    90. Chen, W, Sommerfeld, M, Hu, Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102: pp. 135-41
    91. Ahmad, I, Fatma, Z, Yazdani, SS, Kumar, S (2012) DNA barcode and lipid analysis of new marine algae potential for biofuel. Algal Res 2: pp. 10-5
    92. Notman, R, Noro, M, O鈥橫alley, B, Anwar, J (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128: pp. 13982-3
    93. Sitepu, IR, Ignatia, L, Franz, AK, Wong, DM, Faulina, SA, Tsui, M (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91: pp. 321-8
    94. Doan, TTY, Sivaloganathan, B, Obbard, JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35: pp. 2534-44
    95. Massart, A, Aubry, E, Hantson, A-L (2010) Study of culture strategies of Dunaliella tertiolecta combining high cell density and accumulation of lipids to produce biodiesel. Biotechnol Agron Soc 14: pp. 567-72
    96. Azencott, HR, Peter, GF, Prausnitz, MR (2007) Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound Med Biol 33: pp. 1805-17
    97. Guilbault GG. Practical fluorescence; theory, methods, and techniques. Guilbault GG, editor. New York: M. Dekker; 1973.
    98. Pick, U Adaptation of the halotolerant Alga dunaliella to high salinity. In: L盲uchli, A, L眉ttge, U eds. (2004) Salinity: Environment - Plants - Molecules. Springer, Netherlands Dordrecht, pp. 97-112
    99. Benbouzid, H, Floch, S, Stephan, L, Olier, R, Privat, M (2012) Combined effects of salinity and temperature on the solubility of organic compounds. J Chem Thermodyn 48: pp. 54-64
    100. Castro, GR, Kamdar, RR, Panilaitis, B, Kaplan, DL (2005) Triggered release of proteins from emulsan-alginate beads. J Control Release 109: pp. 149-57
    101. Murphy, JJ, Furusho, H, Paton, RM, Nomura, K (2007) Precise synthesis of poly(macromonomer)s containing sugars by repetitive ROMP and their attachments to poly(ethylene glycol): synthesis, TEM analysis and their properties as amphiphilic block fragments. Chemistry 13: pp. 8985-97
    102. Hyka, P, Lickova, S, P艡ibyl, P, Melzoch, K, Kovar, K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31: pp. 2-16
    103. Manandhar-Shrestha, K, Hildebrand, M (2013) Development of flow cytometric procedures for the efficient isolation of improved lipid accumulation mutants in a Chlorella sp. microalga. J Appl Phycol 25: pp. 1643-51
    104. Traller, JC, Hildebrand, M (2013) High throughput imaging to the diatom Cyclotella cryptica demonstrates substantial cell-to-cell variability in the rate and extent of triacylglycerol accumulation. Algal Research 2: pp. 244-52
    105. Bader, M (1980) A systematic approach to standard addition methods in instrumental analysis. J Chem Educ 57: pp. 703
    106. Gardner, R, Peters, P, Peyton, B, Cooksey, KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23: pp. 1005-16
    107. Carrier, G, Garnier, M, Cunff, L, Bougaran, G, Probert, I, Vargas, C (2014) Comparative transcriptome of wild type and selected strains of the microalgae Tisochrysis lutea provides insights into the genetic basis, lipid metabolism and the life cycle. PLoS One 9: pp. e86889
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Plant Breeding/Biotechnology
    Renewable and Green Energy
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1754-6834
文摘
Microalgae are currently emerging as one of the most promising alternative sources for the next generation of food, feed, cosmetics and renewable energy in the form of biofuel. Microalgae constitute a diverse group of microorganisms with advantages like fast and efficient growth. In addition, they do not compete for arable land and offer very high lipid yield potential. Major challenges for the development of this resource are to select lipid-rich strains using high-throughput staining for neutral lipid content in microalgae species. For this purpose, the fluorescent dyes most commonly used to quantify lipids are Nile red and BODIPY 505/515. Their fluorescent staining for lipids offers a rapid and inexpensive analysis tool to measure neutral lipid content, avoiding time-consuming and costly gravimetric analysis. This review collates and presents recent advances in algal lipid staining and focuses on Nile red and BODIPY 505/515 staining characteristics. The available literature addresses the limitations of fluorescent dyes under certain conditions, such as spectral properties, dye concentrations, cell concentrations, temperature and incubation duration. Moreover, the overall conclusion of the present review study gives limitations on the use of fluorochrome for screening of lipid-rich microalgae species and suggests improved protocols for staining recalcitrant microalgae and recommendations for the staining quantification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700