Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications
详细信息    查看全文
  • 作者:Hana Vaisocherová ; Eduard Brynda ; Jiří Homola
  • 关键词:Label ; free optical biosensors ; Non ; fouling coatings ; Functionalization ; Self ; assembled monolayers ; Polymer brushes ; Blood plasma
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:407
  • 期:14
  • 页码:3927-3953
  • 全文大小:1,267 KB
  • 参考文献:1.Sun Y-S (2013) Optical biosensors for label-free detection of biomolecular interactions. Instrum Sci Technol 42(2):109′7
    2.Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1?:8?
    3.Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23(2?:77?
    4.Phelan ML, Nock S (2003) Generation of bioreagents for protein chips. Proteomics 3(11):2123?34
    5.Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690?8
    6.Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok HA (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437‵27
    7.Ligler FS, Taitt CAR (2002) Optical biosensors : present and future. Elsevier, Amsterdam Oxford
    8.Rodriguez-Emmenegger C, Brynda E, Riedel T, Houska M, Subr V, Alles AB, Hasan E, Gautrot JE, Huck WT (2011) Polymer brushes showing non-fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. Macromol Rapid Commun 32(13):952‵7
    9.Rodriguez-Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB (2009) Interaction of blood plasma with antifouling surfaces. Langmuir 25(11):6328″33
    10.Rodriguez-Emmenegger C, Kylian O, Houska M, Brynda E, Artemenko A, Kousal J, Alles AB, Biederman H (2011) Substrate-independent approach for the generation of functional protein resistant surfaces. Biomacromolecules 12(4):1058‰66
    11.Klok HA, Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437‵27
    12.Blattler TM, Pasche S, Textor M, Griesser HJ (2006) High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir 22(13):5760?69
    13.Zhang Z, Chen S, Jiang S (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12):3311″15
    14.Calvo KR, Liotta LA, Petricoin EF (2005) Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy. Biosci Rep 25(1?:107′5
    15.Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462?3
    16.Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Ruth N, Jerome R, Jerome C (2008) Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate). Langmuir 24(13):6649?58
    17.de Feijter JA, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the ad-sorption of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759?72
    18.Tumolo T, Angnes L, Baptista MS (2004) Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal Biochem 333(2):273?9
    19.Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sensors Actuators B Chem 61(1?:100′7
    20.Hsu SH, Huang YT (2005) A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications. J Lightwave Technol 23(12):4200′06
    21.Schmitt K, Schirmer B, Hoffmann C, Brandenburg A, Meyrueis P (2007) Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens Bioelectron 22(11):2591‵97
    22.Brandenburg A, Henninger R (1994) Integrated optical young interferometer. Appl Opt 33(25):5941?47
    23.Schneider BH, Edwards JG, Hartman NF (1997) Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. Clin Chem 43(9):1757?63
    24.Schneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Optical chip immunoassay for hCG in human whole blood. Biosens Bioelectron 15(11′):597‰4
    25.Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation. Biosens Bioelectron 8(7?:347‵4
    26.Goddard NJ, Pollardknight D, Maule CH (1994) Real-time biomolecular interaction analysis using the resonant mirror sensor. Analyst 119(4):583?
  • 作者单位:Hana Vaisocherová (1)
    Eduard Brynda (2)
    Ji?í Homola (1)

    1. Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, Prague 8, 18251, Czech Republic
    2. Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq.2, Prague 6, 16206, Czech Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
This review focuses on recent advances in the development of functionalizable antifouling coatings and their applications in label-free optical biosensors. Approaches to the development of antifouling coatings, ranging from self-assembled monolayers and PEG derivatives to ultra-low-fouling polymer brushes, are reviewed. Methods of preparation and characterization of antifouling coatings and the functionalization of antifouling coatings with bioreceptors are reviewed, and the effect of functionalization on the fouling properties of biofunctional coating is discussed. Special attention is given to biofunctional coatings for label-free bioanalysis of blood plasma and serum for medical diagnostics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700