Asymmetric deformation of bubble shape: cause or effect of vortex-shedding?
详细信息    查看全文
  • 作者:Kamil Wichterle ; Marek Ve?e? ; Marek C. R??i?ka
  • 关键词:bubble ; bubble shape ; bubble velocity ; bubble oscillation ; surface tension
  • 刊名:Chemical Papers
  • 出版年:2014
  • 出版时间:January 2014
  • 年:2014
  • 卷:68
  • 期:1
  • 页码:74-79
  • 全文大小:279KB
  • 参考文献:1. Aybers, N. M., & Tapucu, A. (1969a). The motion of gas bubbles rising through stagnant liquid. / W?rme- und Stoffübertrag, / 2, 118-28. DOI: 10.1007/bf01089056. CrossRef
    2. Aybers, N. M., & Tapucu, A. (1969b). Studies on the drag and shape of gas bubbles rising through a stagnant liquid. / W?rme- und Stoffübertrag, / 2, 171-77. DOI: 10.1007/bf00751164. CrossRef
    3. Bunner, B., & Tryggvason, G. (1999). Direct numerical simulations of three-dimensional bubbly flows. / Physics of Fluids, / 11, 1967-969. DOI: 10.1063/1.870105. CrossRef
    4. Clift, R., Grace, J. R., & Weber, M. E. (2005). / Bubbles, drops, and particles. Mineola, NY, USA: Dover Publications.
    5. de Vries, A. W. G. (2001). / Path and wake of a rising bubble. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands.
    6. de Vries, A. W. G., Biesheuvel, A., & van Wijngaarden, L. (2002). Notes on the path and wake of a gas bubble rising in pure water. / International Journal of Multiphase Flow, / 28, 1823-835. DOI: 10.1016/s0301-9322(02)00036-8. CrossRef
    7. Duineveld, P. C. (1995). The rise velocity and shape of bubbles in pure water at high Reynolds number. / Journal of Fluid Mechanics, / 292, 325-32. DOI:10.1017/s0022112095001546. CrossRef
    8. Ellingsen, K., & Risso, F. (2001). On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. / Journal of Fluid Mechanics, / 440, 235-68. DOI:10.1017/s0022112001004761. CrossRef
    9. Esmaeeli, A., & Tryggvason, G. (1999). Direct numerical simulations of bubbly flows Part 2. Moderate Reynolds number arrays. / Journal of Fluid Mechanics, / 385, 325-58. DOI:10.1017/s0022112099004310. CrossRef
    10. Fujiwara, A., Tokuhiro, A., & Hishida, K. (2000). Application of PIV/LIF and shadow-image to a bubble rising in a linear shear flow field. In / Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, July 10-3, 2000 (38-2). Lisbon, Portugal.
    11. Koebe, M. (2004). / Numerische Simulation aufsteigender Blasenmit und ohne Stoffaustauschmittels der Volume of Fluid Methode. Ph.D. Thesis, University of Paderborn, Paderborn, Germany. (in German)
    12. Lindt, J. T. (1972). Periodic nature of the drag on a rising bubble. / Chemical Engineering Science, / 27, 1775-781. DOI: 10.1016/0009-2509(72)85039-5. CrossRef
    13. Lunde, K., & Perkins, R. J. (1998). Shape oscillations of rising bubbles. / Applied Scientific Research, / 58, 387-08. DOI: 10.1023/a:1000864525753. CrossRef
    14. Magnaudet, J., & Eames, I. (2000). The motion of high-Reynolds-number bubbles in inhomogeneous flows. / Annual Review of Fluid Mechanics, / 32, 659-08. DOI: 10.1146/annurev. fluid.32.1.659. CrossRef
    15. Mercier, J., Lyrio, A., & Froslund, R. (1973). Three-dimensional study of the nonrectilinear trajectory of air bubbles in water. / Journal of Applied Mechanics, / 40, 650-54. DOI: 10.1115/1.3423065. CrossRef
    16. Mougin, G., & Magnaudet, J. (2001). Path instability of a rising bubble. / Physical Review Letters, / 88, 014502. DOI: 10.1103/PhysRevLett.88.014502. CrossRef
    17. Project Gutenberg (2010). / The notebooks of Leonardo da Vinci. Retrieved April 10, 2012, from http://www.gutenberg.org/ebooks/5000
    18. Prosperetti, A. (2004). Bubbles. / Physics of Fluids, / 16, 1852-865. DOI: 10.1063/1.1695308. CrossRef
    19. Ryskin, G., & Leal, L. G. (1984). Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancydriven motion of a gas bubble through a quiescent liquid. / Journal of Fluid Mechanics, / 148, 19-5. DOI: 10.1017/s0022112084002226. CrossRef
    20. Saffman, P. G. (1956). On the rise of small air bubbles in water. / Journal of Fluid Mechanics, / 1, 249-75. DOI:10.1017/s0022112056000159. CrossRef
    21. Shew, W. L., & Pinton, J. F. (2006). Dynamical model of bubble path instability. / Physical Review Letters, / 97, 144508. DOI: 10.1103/PhysRevLett.97.144508. CrossRef
    22. ?im?ík, M. (2008). / Simulation of multiphase flow reactors with code Fluent. Ph.D. Thesis, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague.
    23. Tomiyama, A. (2002). Single bubbles in stagnant liquids and in linear shear flows. In H. M. Prasser (Ed.), / Proceedings of Workshop on Measurement Technology (MTWS5), September 18-0, 2002 (pp. 3-9). Dresden, Germany.
    24. Tomiyama, A., Celata, G. P., Hosokawa, S., & Yoshida, S. (2002). Terminal velocity of single bubbles in surface tension force dominant regime. / International Journal of Multiphase Flow, / 28, 1497-519. DOI: 10.1016/s0301-9322(02)00032-0. CrossRef
    25. Ve?e?, M. (2012). / Dynamika bublin vyplouvajících v protiproudu kapaliny. Habilitation, Czech Technical University in Prague, Prague, Czech Republic. (in Czech)
    26. Vecer, M., Lestinsky, P., Wichterle, K., & Ruzicka, M. C. (2012). On bubble rising in countercurrent flow. / International Journal of Chemical Reactor Engineering, / 10, A30. DOI: 10.1515/1542-6580.2995. CrossRef
    27. Veldhuis, C., Biesheuvel, A., & van Wijngaarden, L. (2008). Shape oscillations on bubbles rising in clean and in tap water. / Physics of Fluids, / 20, 040705. DOI: 10.1063/1.2911042. CrossRef
    28. Wichterle, K., Ve?e?, M., & R??i?ka, M. C. (2012). Dumbbell model of bubble stability. In J. Marko? (Ed.), / Proceedings of the 39th International Conference of the Slovak Society of Chemical Engineering, May 21-5, 2012 (pp. 313-18). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.
    29. Wu, M. M., & Gharib, M. (2002). Experimental studies on the shape and path of small air bubbles rising in clean water. / Physics of Fluids, / 14, L49–L52. DOI: 10.1063/1.1485767. CrossRef
    30. Yoshida, S., & Manasseh, R. (1997). Trajectories of rising bubbles. In / Proceedings of the 16th Japanese Multiphase Flow Symposium, July, 1997. Touya, Hokkaido: The Japanese Society for Multiphase Flow.
    31. Zhang, C., Eckert, S., & Gerbeth, G. (2005). Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field. / International Journal of Multiphase Flow, / 31, 824-42. DOI: 10.1016/j.ijmultiphaseflow. 2005.05.001. CrossRef
  • 作者单位:Kamil Wichterle (1)
    Marek Ve?e? (1)
    Marek C. R??i?ka (2)

    1. Department of Chemistry, VSB-Technical University of Ostrava, 17. listopadu 15, 70833, Ostrava Poruba, Czech Republic
    2. Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 16502, Praha 6 Suchdol, Czech Republic
  • ISSN:1336-9075
文摘
Two perpendicular projections of rising bubbles were observed in counter-current downstream diverging flow. Evidently, the bubbles did not enter the boundary layer at the channel wall and a plug liquid flow assumption was acceptable in our experimental equipment. This confirmed that the experiment was appropriate for simulation of bubble rises in a quiescent liquid column. Recent data obtained by a high-speed camera permitted recording over a period of 60 s. Image analysis by a tailor-made program provided a time-series of quantities related to the position, size, and shape of bubbles. In addition to determination of the aspect ratio of the equivalent oblate ellipsoid, deviation from this shape was investigated in respect of the difference between the bubble’s centre of mass and the geometrical centre of bubble projection. Autocorrelation of the data indicated that the bubble inclination oscillated harmonically with a frequency of 5-0 Hz; cross correlation showed that the horizontal shift of the centre of mass, as well as the horizontal velocity, increased with increasing bubble inclination, and the vertical shift of the centre of mass increased with an increases in the absolute value of the bubble inclination. There is no significant phase shift in the oscillation of these quantities. The bulky bottom side of the bubbles is in accordance with the model of bubble oscillation induced by instability of the equilibrium of gravity and surface tension forces. The oscillation frequency dependence on surface forces (E?tv?s number) is evident, while viscosity does not play a significant role in low-viscosity liquids. Therefore, vortex-shedding is more likely to be an effect of the oscillation and not its cause.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700