Synthesis and characterization of emulsifier-free trilayer core–shell polysilsesquioxane/polyacrylate/poly(fluorinated acrylate) hybrid latex particles
详细信息    查看全文
  • 作者:Ruiqin Bai (1)
    Teng Qiu (1) qiuteng@mail.buct.edu.cn
    Cheng Xu (1)
    Lifan He (1)
    Xiaoyu Li (1) lixy@mail.buct.edu.cn
  • 关键词:Trilayer – Core–shell – Polysilsesquioxane – Fluorine ; containing – Hybrid latex particles
  • 刊名:Colloid & Polymer Science
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:290
  • 期:9
  • 页码:769-776
  • 全文大小:344.7 KB
  • 参考文献:1. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592
    2. Yu Y-Y, Chen C-Y, Chen W-C (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44:593–601
    3. Lagaly G, Beneke K (1991) Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid Polym Sci 269:1198–1211
    4. Schmidtke K, Lieser G, Klapper M, Müllen K (2010) Complex inorganic/organic core-shell architectures via an inverse emulsion process. Colloid Polym Sci 288:333–339
    5. Ji M, Liu H, Yang X (2011) Synthesis of monodisperse SiO2/P(DVB-SO3H)/SiO2/P(DVB-SO3H) tetra-layer polyelectrolyte microspheres and the corresponding hollow P(DVB-SO3H) polyelectrolyte microspheres with a shell-in-shell structure. Polym Chem 2:148–156
    6. Li L, Qin D, Yang X, Liu G (2010) Synthesis of titania/polymer core–shell hybrid microspheres. Colloid Polym Sci 288:199–206
    7. Sondi I, Fedynyshyn TH, Sinta R, Matijevi? E (2000) Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 16:9031–9034
    8. Luna-Xavier JL, Bourgeat-Lami E, Guyot A (2001) The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization. Colloid Polym Sci 279:947–958
    9. Cui X, Zhong S, Yan J, Wang C, Zhang H, Wang H (2010) Synthesis and characterization of core–shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell. Colloids Surf A 360:41–46
    10. Zhang K, Chen H, Chen X, Chen Z, Cui Z, Yang B (2003) Monodisperse silica polymer core shell microspheres via surface grafting and emulsion polymerization. Macromol Mater Eng 288:380–385
    11. Zhang K, Zheng L, Zhang X, Chen X, Yang B (2006) Silica–PMMA core–shell and hollow nanospheres. Colloids Surf A 277:145–150
    12. Chiang CL, Ma CCM (2003) Synthesis, characterization, and properties of novel ladderlike phosphorus containing polysilsesquioxanes. J Polym Sci Part A Polym Chem 41:1371–1379
    13. Tai H, Sergienko A, Silverstein M (2001) Organic–inorganic networks in foams from high internal phase emulsion polymerizations. Polymer 42:4473–4482
    14. Kim S, Heo S, Koak J, Lee J, Lee Y, Chung D, Lee J, Hong S (2007) A biocompatibility study of a reinforced acrylic based hybrid denture composite resin with polyhedraloligosilsesquioxane. J Oral Rehabil 34:389–395
    15. Ni C, Ni G, Zhang S, Liu X, Chen M, Liu L (2010) The preparation of inorganic/organic hybrid nanomaterials containing silsesquioxane and its reinforcement for an epoxy resin network. Colloid Polym Sci 288:469–477
    16. Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13:3306–3319
    17. Oviatt HWJ, Shea KJ, Kalluri S, Shi Y, Steier WH, Dalton LR (1995) Applications of organic bridged polysilsesquioxane xerogels to nonlinear optical materials by the sol–gel method. Chem Mater 7:493–498
    18. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437
    19. Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2009) Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J Mater Chem 19:7716–7720
    20. Wang X, Wu L, Li J (2011) Study on the flame retarded poly(methyl methacrylate) by triphenylphosphate and nano-poly(phenylsilsesquioxane) spheres. Adv Polym Technol 30:33–40
    21. Ha JW, Park IJ, Lee SB (2005) Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films. Macromolecules 38:736–744
    22. Lee J, Jin F, Park S, Park J (2004) Study of new fluorine-containing epoxy resin for low dielectric constant. Surf Coat Technol 180:650–654
    23. Van Ravenstein L, Ming W, Van de Grampel R, Van Der Linde R, de With G, Loontjens T, Thüne P, Niemantsverdriet J (2004) Low surface energy polymeric films from novel fluorinated blocked isocyanates. Macromolecules 37(2):408–413
    24. Pomes V, Fernandez A, Costarramone N, Grano B, Houi D (1999) Fluorine migration in a soil bed submitted to an electric field: influence of electric potential on fluorine removal. Colloids Surf A 159:481–490
    25. Xiao X, Wang Y (2009) Emulsion copolymerization of fluorinated acrylate in the presence of a polymerizable emulsifier. Colloids Surf A 348:151–156
    26. Cui X, Zhong S, Wang H (2007) Synthesis and characterization of emulsifier-free core-shell fluorine-containing polyacrylate latex. Colloids Surf A 303:173–178
    27. Chen Y, Cheng S, Wang Y, Zhang C (2006) Chemical components and properties of core–shell acrylate latex containing fluorine in the shell and their films. J Appl Polym Sci 99:107–114
    28. Owens DK, Wendt R (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747
    29. Park IJ, Lee SB, Choi CK (1998) Surface properties of the fluorine-containing graft copolymer of poly((perfluoroalkyl)ethyl methacrylate)-g-poly(methyl methacrylate). Macromolecules 31:7555–7558
    30. Kaneko Y, Iyi N (2009) Sol–gel synthesis of ladder polysilsesquioxanes forming chiral conformations and hexagonal stacking structures. J Mater Chem 19:7106–7111
    31. Gu XH, Xue G, Jiang BC (1997) Effect of deposition conditions for γ-aminopropyltriethoxy silane on adhesion between copper and epoxy resins. Appl Surf Sci 115:66–73
    32. Cui X, Zhong S, Wang H (2007) Emulsifier-free core–shell polyacrylate latex nanoparticles containing fluorine and silicon in shell. Polymer 48:7241–7248
    33. Schmidt DL, Brady RF Jr, Lam K, Schmidt DC, Chaudhury MK (2004) Contact angle hysteresis, adhesion, and marine biofouling. Langmuir 20:2830–2836
    34. Dreher WR, Singh A, Marek W (2005) Effect of perfluoroalkyl chain length on synthesis and film formation of fluorine-containing colloidal dispersions. Macromolecules 38:4666–4672
    35. Bongiovanni R, Beamson G, Mamo A, Priola A, Recca A, Tonelli C (2000) High resolution XPS investigation of photocured films containing perfluoropolyether acrylates. Polymer 41:409–414
    36. Kassis CM, Steehler JK, Betts DE, Guan Z, Romack TJ, DeSimone JM, Linton RW (1996) XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene. Macromolecules 29:3247–3254
    37. Mao Y, Gleason KK (2006) Vapor-deposited fluorinated glycidyl copolymer thin films with low surface energy and improved mechanical properties. Macromolecules 39:3895–3900
  • 作者单位:1. College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029 China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
The trilayer core–shell polysilsesquioxane/polyacrylate/poly(fluorinated acrylate) (PSQ/PA/PFA) hybrid latex particles are successfully prepared, using functional PSQ latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of a reactive emulsifier as seeds. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core–shell structure and a narrow size distribution. The Fourier transform infrared (FTIR) spectra show that fluorinated acrylate monomers are effectively involved in the emulsion copolymerization and formed the fluorine-containing hybrid latex particles. XPS analysis of the obtained hybrid latex film reveals that the intensity of fluorine signal in the film–air interface is higher than that in the film–glass interface. In addition, compared with pure polyacrylate latex film, the obtained fluorine-containing hybrid film shows higher hydrophobicity and thermal stability, and lower surface free energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700