A Field-Compatible Method for Interpolating Biopotentials
详细信息    查看全文
文摘
Mapping of bioelectric potentials over a given surface (e.g., the torso surface, the scalp) often requires interpolation of potentials into regions of missing data. Existing interpolation methods introduce significant errors when interpolating into large regions of high potential gradients, due mostly to their incompatibility with the properties of the three-dimensional (3D) potential field. In this paper, an interpolation method, inverse-forward (IF) interpolation, was developed to be consistent with Laplace's equation that governs the 3D field in the volume conductor bounded by the mapped surface. This method is evaluated in an experimental heart–torso preparation in the context of electrocardiographic body surface potential mapping. Results demonstrate that IF interpolation is able to recreate major potential features such as a potential minimum and high potential gradients within a large region of missing data. Other commonly used interpolation methods failed to reconstruct major potential features or preserve high potential gradients. An example of IF interpolation with patient data is provided to illustrate its applicability in the actual clinical setting. Application of IF interpolation in the context of noninvasive reconstruction of epicardial potentials (the inverse problem) is also examined. © 1998 Biomedical Engineering Society.PAC98: 8710+e, 0260Ed

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700