Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli
详细信息    查看全文
  • 作者:Rafael R. de Oliveira ; Wayne L. Nicholson
  • 关键词:2 ; 3 ; Butanediol ; Bacillus subtilis ; Butanediol dehydrogenase ; Escherichia coli ; Shuttle plasmid
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:2
  • 页码:719-728
  • 全文大小:970 KB
  • 参考文献:Aguilera RF (2014) Production costs of global conventional and unconventional petroleum. Energy Policy 64:134–140CrossRef
    Akhtar P, Anand SP, Watkins SC, Khan SA (2009) The tubulin-like RepX protein encoded by the pXO1 plasmid forms polymers in vivo in Bacillus anthracis. J Bacteriol 191(8):2493–2500. doi:10.​1128/​JB.​00027-09 PubMed PubMedCentral CrossRef
    Anderson TD, Miller JI, Fierobe HP, Clubb RT (2013) Recombinant Bacillus subtilis that grows on untreated plant biomass. Appl Environ Microbiol 79(3):867–876. doi:10.​1128/​AEM.​02433-12 PubMed PubMedCentral CrossRef
    Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, Dijl JM, Hecker M (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502PubMed CrossRef
    Anvari M, Pahlavanzadeh H, Vasheghani-Farahani E, Khayati G (2009) In situ recovery of 2,3-butanediol from fermentation by liquid-liquid extraction. J Ind Microbiol Biotechnol 36(2):313–317. doi:10.​1007/​s10295-008-0501-z PubMed CrossRef
    Band L, Henner DJ (1984) Bacillus subtilis requires a stringent Shine-Dalgarno region for gene expression. DNA 3(1):17–21PubMed CrossRef
    Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94:651–658PubMed CrossRef
    Bokinskya G, Peralta-Yahyaa PP, Georgea A, Holmesa BM, Steena EJ, Dietricha J, Leea TS, Tullman-Erceka D, Voigtg CA, Simmonsa BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954CrossRef
    Boylan RJ, Brooks D, Young FE, Mendelson NH (1972) Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110(1):281–290PubMed PubMedCentral
    Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725. doi:10.​1016/​j.​biotechadv.​2009.​05.​002 PubMed CrossRef
    Cruz Ramos H, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, Glaser P, Jahn D (2000) Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol 182(11):3072–3080PubMed PubMedCentral CrossRef
    Cutting SM, Vander Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. John Wiley and Sons, Sussex, pp 27–74
    Dittmar M (2012) Nuclear energy: status and future limitations. Energy 37:35–40CrossRef
    Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177(6):1497–1504PubMed PubMedCentral
    Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang YJ, Zhao X (2014) NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111(10):2126–2131. doi:10.​1002/​bit.​25265 PubMed CrossRef
    Gerber L, Maréchal F (2012) Environomic optimal configurations of geothermal energy conversion systems: application to the future construction of enhanced geothermal systems in Switzerland. Energy 45(1):908–923CrossRef
    Gundlach L, Burfeindt B, Mahrt J, Willig F (2012) Dynamics of ultrafast photoinduced heterogeneous electron transfer, implications for recent solar energy conversion scenarios. Chem Phys Lett 545:35–39CrossRef
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580PubMed CrossRef
    Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32(4):728–730PubMed
    Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364. doi:10.​1016/​j.​biotechadv.​2011.​01.​007 PubMed CrossRef
    Joseph P, Fantino JR, Herbaud ML, Denizot F (2001) Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS Microbiol Lett 205:91–97PubMed CrossRef
    Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Hènaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Joris B, Karamata D, Kasahara Y, Klaerr-Balnchard M, Klein C, Kobayashi Y, Koetter P, Konigstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauël C, Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O'Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapaport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandebol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. doi:10.​1038/​36786
    Lumbreras S, Ramos A (2012) Offshore wind farm electrical design: a review. Wind Energy 10:1002–1498
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR (2007) Contemporary causes of skin and soft tissue infections in North america, Latin america, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998–2004). Ann Clin Microbiol Antimicrob 57:7–13
    Murray J, King D (2012) Oil’s tipping point has passed. Nature 481:433–435PubMed CrossRef
    Nakano MM, Zuber P (1998) Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52:165–190. doi:10.​1146/​annurev.​micro.​52.​1.​165 PubMed CrossRef
    Nicholson WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74(22):6832–6838. doi:10.​1128/​aem.​00881-08 PubMed PubMedCentral CrossRef
    Oliveira RR, Nicholson WL (2013) The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2,3-butanediol dehydrogenase. Appl Microbiol Biotechnol 97(16):7307–7316. doi:10.​1007/​s00253-013-4871-4 PubMed CrossRef
    Otero JM, Panagiotou G, Olsson L (2007) Fueling industrial biotechnology growth with bioethanol. Adv Biochem Eng Biotechnol 108:1–40. doi:10.​1007/​10_​2007_​071 PubMed
    Palsson BO, Fathi-Afshar S, Rudd DF, Lightfoot EN (1981) Biomass as a source of chemical feedstocks: an economic evaluation. Science 213(4507):513–517. doi:10.​1126/​science.​213.​4507.​513 PubMed CrossRef
    Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312PubMed CrossRef
    Petit MA, Ehrlich SD (2000) The NAD-dependent ligase encoded by yerG is an essential gene of Bacillus subtilis. Nucleic Acids Res 28(23):4642–4648PubMed PubMedCentral CrossRef
    Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603PubMed PubMedCentral
    Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7(1):16. doi:10.​1186/​1754-6834-7-16 PubMed PubMedCentral CrossRef
    Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Environ Microbiol 70:5373–5382CrossRef
    Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175(12):3863–3875PubMed PubMedCentral
    Rourke FO, Boyle F, Reynolds A (2010) Tidal energy update 2009. Appl Energy 87:398–409CrossRef
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17PubMed CrossRef
    Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16(17):8207–8211PubMed PubMedCentral CrossRef
    Steubing B, Zah R, Ludwig C (2011) Life cycle assessment of SNG from wood for heating, electricity, and transportation. Biomass Bioenergy 35:2950–2960CrossRef
    Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO (2002) Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl Environ Microbiol 68:6263–6272PubMed PubMedCentral CrossRef
    Vagner V, Dervyn E, Ehrlich SD (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144:3097–3104PubMed CrossRef
    Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24:1061–1068PubMed CrossRef
    Villa DC, Angioni S, Quartarone E, Righetti PP, Mustarelli P (2013) New sulfonated PBIs for PEMFC application. Fuel Cells 13:98–103CrossRef
    Voloch M, Jansen NB, Ladisch MR, Tsao GT, Narayan R, Rodwell VW (1985) 2,3-Butanediol. In: Murray M-Y, Cooney CL, Humphrey AE (eds) Comprehensive biotechnology: the principles, applications and regulations of biotechnology in industry, agriculture and medicine. Pergamon Press, New York, pp 933–947
    Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109(7):1610–1621. doi:10.​1002/​bit.​24427 PubMed CrossRef
    Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78(6):917–926. doi:10.​1007/​s00253-008-1387-4 PubMed CrossRef
    Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P (2014) Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng 23:22–33PubMed CrossRef
    Yan Y, Lee C, Liao JC (2009) Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7:3914–3917PubMed CrossRef
    Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013) Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 8(10):e76149. doi:10.​1371/​journal.​pone.​0076149 PubMed PubMedCentral CrossRef
    Zhang X, Zhang R, Bao T, Yang T, Xu M, Li H, Xu Z, Rao Z (2013) Moderate expression of the transcriptional regulator AlsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol 40:1067–1076PubMed CrossRef
  • 作者单位:Rafael R. de Oliveira (1) (2)
    Wayne L. Nicholson (1)

    1. Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Exploration Park at Kennedy Space Center, Merritt Island, FL, 32953, USA
    2. IPR–PUCRS, Av. Ipiranga, 6681–Prédio 96 J, 90619-900, Porto Alegre, RS, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals. Keywords 2,3-Butanediol Bacillus subtilis Butanediol dehydrogenase Escherichia coli Shuttle plasmid

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700