Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis
详细信息    查看全文
  • 作者:Aneta M. Białkowska…
  • 关键词:2 ; 3 ; Butanediol ; Fermentation ; B. subtilis ; Vitreoscilla stercoraria hemoglobin (vhb) ; Acetoin reductase/2 ; 3 ; butanediol dehydrogenase (bdhA)
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:100
  • 期:6
  • 页码:2663-2676
  • 全文大小:975 KB
  • 参考文献:Alam S, Capit F, Weigandg WA, Hong J (1990) Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: effect of initial substrate concentration and aeration. J Chem Tech Biotechnol 41:71–84. doi:10.​1002/​jctb.​280470109
    Barham D, Trinder P (1972) An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145. doi:10.​1039/​AN9729700142 CrossRef PubMed
    Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94:651–658. doi:10.​1007/​s00253-011-3774-5 CrossRef PubMed
    Budsławski J, Drabant Z (1972) Food analysis methods. WNT, Warsaw
    Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27:715–725. doi:10.​1016/​j.​biotechadv.​2009.​05.​002 CrossRef PubMed
    Cheng KK, Liu Q, Zhang JA, Li JP, Xu JM, Wang GH (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45:613–616. doi:10.​1016/​j.​procbio.​2009.​12.​009 CrossRef
    Dai JY, Zhao P, Cheng XL, Xiu ZL (2015) Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 175:3014–3024. doi:10.​1007/​s12010-015-1481-x CrossRef PubMed
    Gao J, Xu H, Li Q, Feng X, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour Technol 101:7076–7082. doi:10.​1016/​j.​biortech.​2010.​03.​143 CrossRef
    Geckil H, Barak Z, Chipman DM, Erenler SO, Webster DA, Stark BC (2004) Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst Eng 26:325–330. doi:10.​1007/​s00449-004-0373-1 CrossRef PubMed
    Guo X, Cao Ch, Wang Y, Li Ch, Wu M, Chen Y, Zhang C, Pei H, Xiao D (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels 7:44. doi:10.​1186/​1754-6834-7-44 PubMedCentral CrossRef PubMed
    Huang ChF, Jiang YF, Guo GL, Hwang WS (2013) Method of 2,3-butanediol production from glycerol and acid-pretreated rice straw hydrolysate by newly isolated strains: pre-evaluation as an integrated biorefinery process. Bioresour Technol 135:446–453. doi:10.​1016/​j.​biortech.​2012.​10.​141 CrossRef PubMed
    Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758. doi:10.​1007/​s00253-009-2222-2 CrossRef PubMed
    Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364. doi:10.​1016/​j.​biotechadv.​2011.​01.​007 CrossRef PubMed
    Jung MY, Ng ChY, Song H, Lee J, Oh MK (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol 95:461–469. doi:10.​1007/​s00253-012-3883-9 CrossRef PubMed
    Jung MY, Park BS, Lee J, Oh MK (2013) Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol 139:21–27. doi:10.​1016/​j.​biortech.​2013.​04.​003 CrossRef PubMed
    Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prüße U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723. doi:10.​1007/​s00253-013-4981-z CrossRef PubMed
    Kallio PT, Bailey JE (1996) Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of α-amylase and neutral protease in Bacillus subtilis. Biotechnol Prog 12:31–39. doi:10.​1021/​bp950065j CrossRef PubMed
    Krauze S (1962) Food analyst laboratory manual. PZWL, Warsaw
    Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.​1038/​227680a0 CrossRef PubMed
    Li ZJ, Jian J, Wei XX, Shen XW, Chen GQ (2010) Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen conditions. Appl Microbiol Biotechnol 87:2001–2009. doi:10.​1007/​s00253-010-2676-2 CrossRef PubMed
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:420–428. doi:10.​1021/​ac60147a030
    Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR (1985) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol Bioeng 27:482–487. doi:10.​1002/​bit.​260270413 CrossRef PubMed
    Nawirska A, Kwaśniewska M (2005) Dietary fiber fractions from fruit and vegetable processing waste. Food Chem 91:221–225. doi:10.​1016/​j.​foodchem.​2003.​10.​005 CrossRef
    Nielsen DR, Yoon SH, Yuan CJ, Prather LJ (2010) Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E. coli. Biotechnol J 5:274–284. doi:10.​1002/​biot.​200900279 CrossRef PubMed
    Nilegaonkar S, Bhosale SB, Kshirsagar DC, Kapadi AH (1992) Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J Microbiol Biotechnol 8:378–381. doi:10.​1007/​BF01198748 CrossRef PubMed
    Pyć R, Antczak T, Bratkowska H (2011) A method of enzymatic preparation production. Polish Patent no. 209161
    Ruohonen L, Aristidou A, Frey AD, Penttila M, Kallio PT (2006) Expression of Vitreoscilla hemoglobin improves the metabolism of xylose in recombinant yeast Saccharomyces cerevisiae under low oxygen conditions. Enzym Microb Technol 39:6–14. doi:10.​1016/​j.​enzmictec.​2005.​06.​024 CrossRef
    Slutter A, Hames B, Ruiz R, Scarlata C, Slutter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618
    Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852. doi:10.​1007/​s00253-008-1823-5 CrossRef PubMed
    Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12. doi:10.​1080/​0738855080191384​0 CrossRef PubMed
    Vishwakarma S (2014) Bioconversion of whey to 2,3-butanediol using Klebsiella oxytoca NRRL-13-199. Indian J Biotechnol 13:236–240
    Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970. doi:10.​1007/​s00253-010-2557-8 CrossRef PubMed
    Wang A, Xu Y, Ma C, Gao Ch, Li L, Wang Y, Tao F, Xu P (2012) Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One 7:e40442. doi:10.​1371/​journal.​pone.​0040442 PubMedCentral CrossRef PubMed
    Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the Gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191. doi:10.​1016/​S0167-7012(98)00087-6 CrossRef
    Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51:650–658. doi:10.​1002/​jobm.​201100033 CrossRef PubMed
    Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013a) Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butandiol dehydrogenase. PLoS One 8:e76149. doi:10.​1371/​journal.​pone.​0076149 PubMedCentral CrossRef PubMed
    Yang TW, Rao ZM, Zhang X, Xu MJ, Xu ZH, Yang ST (2013b) Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol 97:7651–7658. doi:10.​1007/​s00253-013-5048-x CrossRef PubMed
    Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136. doi:10.​1016/​j.​biotechadv.​2006.​11.​001 CrossRef PubMed
  • 作者单位:Aneta M. Białkowska (1)
    Marzena Jędrzejczak-Krzepkowska (1)
    Ewa Gromek (1)
    Joanna Krysiak (1)
    Barbara Sikora (1)
    Halina Kalinowska (1)
    Celina Kubik (1)
    Fokko Schütt (2)
    Marianna Turkiewicz (1)

    1. Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924, Lodz, Poland
    2. Thünen Institute of Wood Research, Leuschnerstrasse 91, 21031, Hamburg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Two recombinants of alkaliphilic Bacillus subtilis LOCK 1086, constructed via different strategies such as cloning the gene encoding bacterial hemoglobin from Vitreoscilla stercoraria (vhb) and overexpression of the gene encoding acetoin reductase/2,3-butanediol dehydrogenase (bdhA) from B. subtilis LOCK 1086, did not produce more 2,3-butanediol (2,3-BD) than the parental strain. In batch fermentations, this strain synthesized 9.46 g/L in 24 h and 12.80 g/L 2,3-BD in 46 h from sugar beet molasses and an apple pomace hydrolysate, respectively. 2,3-BD production by B. subtilis LOCK 1086 was significantly enhanced in fed-batch fermentations. The highest 2,3-BD concentration (75.73 g/L in 114 h, productivity of 0.66 g/L × h) was obtained in the sugar beet molasses–based medium with four feedings with glucose. In a medium based on the apple pomace hydrolysate with three feedings with sucrose, B. subtilis LOCK 1086 produced up to 51.53 g/L 2,3-BD (in 120 h, productivity of 0.43 g/L × h).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700