Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis
详细信息    查看全文
  • 作者:Guo-Chao Xu ; Ya-Qian Bian ; Rui-Zhi Han…
  • 关键词:Bacillus licheniformis ; meso ; 2 ; 3 ; Butanediol dehydrogenase ; Expression ; Characterization
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:3
  • 页码:604-617
  • 全文大小:1,023 KB
  • 参考文献:1.Li, L. X., Zhang, L. J., Li, K., Wang, Y., Gao, C., Han, B. B., Ma, C. Q., & Xu, P. (2013). A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel biochemical. Biotechnology for Biofuels, 6, 123.CrossRef
    2.Ji, X. J., Huang, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnology Advances, 29, 351–364.CrossRef
    3.Li, L. X., Wang, Y., Zhang, L. J., Ma, C. Q., Wang, A. L., Tao, F., & Xu, P. (2012). Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 115, 111–116.CrossRef
    4.Qi, G. F., Kang, Y. F., Li, L., Xiao, A. F., Zhang, S. M., Wen, Z. Y., Xu, D. H., & Chen, S. W. (2014). Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnology for Biofuels, 7, 16.CrossRef
    5.Xu, G. C., & Ni, Y. (2015). Bioreductive preparation of ACE inhibitors precursor (R)-2-hydroxy-4-phenylbutanoate esters: recent advances and future perspectives. Bioresources and Bioprocessing, 2, 15.CrossRef
    6.Ma, C. Q., Wang, A. L., Qin, J. Y., Li, L. X., Ai, X. L., Jiang, T. Y., Tang, H. Z., & Xu, P. (2009). Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Applied Microbiology and Biotechnology, 82, 49–57.CrossRef
    7.Zhang, L. Y., Yang, Y. L., Sun, J. A., Shen, Y. L., Wei, D. Z., Zhu, J. W., & Chu, J. (2010). Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresource Technology, 101, 1961–1967.CrossRef
    8.Ji, X. J., Huang, H., Du, J., Zhu, J. G., Ren, L. J., Hu, N., & Li, S. (2009). Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology, 100, 3410–3414.CrossRef
    9.Wang, A., Xu, Y. Q., Ma, C., Gao, C., Li, L. X., Wang, Y., Tao, F., & Xu, P. (2012). Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS One, 7, e40442.CrossRef
    10.Jurchescu, I. M., Hamann, J., Zhou, X., Ortmann, T., Kuenz, A., Prüβe, U., & Lang, S. (2013). Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Applied Microbiology and Biotechnology, 97, 6715–6723.CrossRef
    11.Hassler, T., Schieder, D., Pfaller, R., Faulstich, M., & Sieber, V. (2012). Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresource Technology, 124, 237–244.CrossRef
    12.Biswas, R., Yamaoka, M., Nakayama, H., Kondo, T., Yoshida, K., Bisaria, V. S., & Kondo, A. (2012). Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Applied Microbiology and Biotechnology, 94, 651–658.CrossRef
    13.Yan, Y. J., Lee, C. C., & Liao, J. C. (2009). Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogen. Organic and Biomolecular Chemistry, 7, 3914–3917.CrossRef
    14.González, E., Fernández, M. R., Larroy, C., Solà, L., Pericàs, M. A., Parés, X., & Biosca, J. A. (2000). Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. Journal of Biological Chemistry, 275, 35876–35885.CrossRef
    15.Yu, B., Sun, J., Bommareddy, R. R., Song, L., & Zeng, A. P. (2011). Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 77, 4230–4233.CrossRef
    16.Nicholson, W. L. (2008). The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Applied and Environmental Microbiology, 74, 6832–6838.CrossRef
    17.Zhang, L. Y., Xu, Q. M., Zhan, S. R., Li, Y. Y., Lin, H., Sun, S. J., Sha, L., Hu, K. H., Guan, X., & Shen, Y. L. (2014). A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Applied Microbiology and Biotechnology, 98, 1175–1184.CrossRef
    18.Giovannini, P. P., Medici, A., Bergamini, C. M., & Rippa, M. (1996). Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorganic and Medicinal Chemistry, 4, 1197–1201.CrossRef
    19.Wang, Z., Song, Q. Q., Yu, M. L., Wang, Y. F., Xiong, B., Zhang, Y. J., Zheng, J. Y., & Ying, X. X. (2014). Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Applied Microbiology and Biotechnology, 98, 641–650.CrossRef
    20.Zhang, L. Y., Xu, Q. M., Peng, X. Q., Xu, B. H., Wu, Y. H., Yang, Y. L., Sun, S. J., Hu, K. H., & Shen, Y. L. (2014). Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcesce. Journal of Industrial Microbiology and Biotechnology, 41, 1319–1327.CrossRef
    21.Wang, Y., Tao, F., & Xu, P. (2014). Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. Journal of Biological Chemistry, 289, 6080–6090.CrossRef
    22.Thanh, T. N., Jürgen, B., Bauch, M., Liebeke, M., Lalk, M., Ehrenreich, A., Evers, S., Maurer, K. H., Antelmann, H., Ernst, F., Homuth, G., Hecker, M., & Schweder, T. (2010). Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Applied Microbiology and Biotechnology, 87, 2227–2235.CrossRef
    23.Raedts, J., Siemerink, M. A. J., Levisson, M., van der Oost, J., & Kengen, S. W. M. (2014). Molecular characterization of an NADPH-dependent acetoin reductase 2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB8052. Applied and Environmental Microbiology, 80, 2011–2020.CrossRef
    24.Xu, G. C., Yu, H. L., Zhang, X. Y., & Xu, J. H. (2012). Access to optically active aryl halohyddrins using a substrate-tolerant carbonyl reductase discovered from Kluyveromyces thermotolerans. ACS Catalysis, 2, 2566–2571.CrossRef
    25.Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jörnvall, H., & Oppermann, U. (2002). Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 277, 25677–25684.CrossRef
    26.Jörnvall, H., Hedlund, J., Bergman, T., Oppermann, U., & Persson, B. (2010). Superfamilies SDR and MDR: from early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities. Biochemical and Biophysical Research Communications, 396, 125–130.CrossRef
  • 作者单位:Guo-Chao Xu (1)
    Ya-Qian Bian (1)
    Rui-Zhi Han (1)
    Jin-Jun Dong (1)
    Ye Ni (1)

    1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
The budC gene encoding a meso-2,3-butanediol dehydrogenase (BlBDH) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli BL21(DE3). Sequence analysis reveals that this BlBDH belongs to short-chain dehydrogenase/reductase (SDR) superfamily. In the presence of NADH, BlBDH catalyzes the reduction of diacetyl to (3S)-acetoin (97.3 % ee), and further to (2S,3S)-2,3-butanediol (97.3 % ee and 96.5 % de). Similar to other meso-2,3-BDHs, it shows oxidative activity to racemic 2,3-butanediol whereas no activity toward racemic acetoin in the presence of NAD+. For diacetyl reduction and 2,3-butanediol oxidation, the pH optimum of BlBDH is 5.0 and 10.0, respectively. Unusually, it shows relatively high activity over a wide pH range from 5.0 to 8.0 for racemic acetoin reduction. BlBDH shows lower K m and higher catalytic efficiency toward racemic acetoin (K m = 0.47 mM, k cat /K m = 432 s–1·mM–1) when compared with 2,3-butanediol (K m = 7.25 mM, k cat /K m = 81.5 s–1·mM–1), indicating its physiological role in favor of reducing racemic acetoin into 2,3-butanediol. The enzymatic characterization of BlBDH provides evidence for the directed engineering of B. licheniformis for producing enantiopure 2,3-butanediol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700