Series transformer based diode-bridge-type solid state fault current limiter
详细信息    查看全文
  • 作者:Amir Heidary ; Hamid Radmanesh…
  • 关键词:Solid state fault current limiter (SSFCL) ; Power quality ; Voltage sag ; Point of common coupling (PCC) ; Isolation transformer ; TM471
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:16
  • 期:9
  • 页码:769-784
  • 全文大小:1,029 KB
  • 参考文献:Abramovitz, A., Smedley, K.M., 2012. Survey of solid-state fault current limiters. IEEE Trans. Power Electron., 27(6):2770鈥?782. [doi:10.1109/TPEL.2011.2174804]CrossRef
    Amanulla, B., Chakrabarti, S., Singh, S.N., 2012. Reconfiguration of power distribution systems considering reliability and power loss. IEEE Trans. Power Deliv., 27(2): 918鈥?26. [doi:10.1109/TPWRD.2011.2179950]CrossRef
    Cheng, S., Chen, M.Y., Wai, R.J., et al., 2014. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(4):300鈥?11. [doi:10.1631/jzus.C13 00250]CrossRef
    Cvoric, D., de Haan, S.W.H., Ferreira, J.A., 2008. Comparison of the four configurations of the inductive fault current limiter. IEEE Power Electronics Specialists Conf., p.3967鈥?973. [doi:10.1109/PESC.2008.4592574]
    Du, H.I., Kim, Y.J., Lee, D.H., et al., 2011. Effect of the resistance of two different coated conductors on the current-limiting performance of flux-lock type superconducting fault current limiters. IEEE Trans. Appl. Supercond., 21(3):1254鈥?257. [doi:10.1109/TASC.2011.210 4350]CrossRef
    Fani, B., Hamedani Golshan, M.E., Askarian Abyaneh, H., 2011. Waveform feature monitoring scheme for transformer differential protection. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(2):116鈥?23. [doi:10.1631/jzus.C1010042]CrossRef
    Firouzi, M., Gharehpetian, G.B., Pishvaei, M., 2013. A dualfunctional bridge type FCL to restore PCC voltage. Int. J. Electr. Power Energy Syst., 46:49鈥?5. [doi:10.1016/j.ijepes.2012.09.011]CrossRef
    Ghanbari, T., Farjah, E., 2013. Unidirectional fault current limiter: an efficient interface between the microgrid and main network. IEEE Trans. Power Syst., 28(2):1591鈥?598. [doi:10.1109/TPWRS.2012.2212728]CrossRef
    Globalspec, 2015. The Engineering Search Engine. Globalspec, Inc., USA. Available from http://鈥媤ww.鈥媑lobalspec.鈥媍om
    Hagh, M.T., Abapour, M., 2007. DC reactor type transformer inrush current limiter. IET Electr. Power Appl., 1(5):808鈥?14. [doi:10.1049/iet-epa:20060511]CrossRef
    Hagh, M.T., Abapour, M., 2009a. Non-superconducting fault current limiters. Eur. Trans. Electr. Power, 19(5):669鈥?82. [doi:10.1002/etep.247]CrossRef
    Hagh, M.T., Abapour, M., 2009b. Nonsuperconducting fault current limiter with controlling the magnitudes of fault currents. IEEE Trans. Power Electron., 24(3):613鈥?19. [doi:10.1109/TPEL.2008.2004496]CrossRef
    Hanif, A., Choudhry, M.A., 2009. Dynamic voltage regulation and power export in a distribution system using distributed generation. J. Zhejiang Univ.-Sci. A, 10(10): 1523鈥?531. [doi:10.1631/jzus.A0820699]CrossRef
    Iwahara, M., Mukhopadhyay, S.C., Yamada, S., et al., 1999. Development of passive fault current limiter in parallel biasing mode. IEEE Trans. Magn., 35(5): 3523鈥?525. [doi:10.1109/20.800577]CrossRef
    Jafari, M., Naderi, S.B., Hagh, M.T., et al., 2011. Voltage sag compensation of point of common coupling (PCC) using fault current limiter. IEEE Trans. Power Deliv., 26(4): 2638鈥?646. [doi:10.1109/TPWRD.2011.2161496]CrossRef
    Jang, J.Y., Park, D.K., Yang, S.E., et al., 2010. A study on the non-inductive coils for hybrid fault current limiter using experiment and numerical analysis. IEEE Trans. Appl. Supercond., 20(3):1151鈥?154. [doi:10.1109/TASC.2010.2041219]CrossRef
    Liu, J.M., Fan, T.R., Tong, K.Z., 2007. Research of network technology for intelligent circuit breaker controller. J. Zhejiang Univ.-Sci. A, 8(3):464鈥?68. [doi:10.1631/jzus.2007.A0464]CrossRef
    Madani, S.M., Rostami, M., Gharehpetian, G.B., et al., 2013. Improved bridge type inrush current limiter for primary grounded transformers. Electr. Power Syst. Res., 95:1鈥?. [doi:10.1016/j.epsr.2012.08.012]CrossRef
    McAullife, J., Amin, D., Peacock, I., et al., 2001. Optimizing capital costs in power-distribution upgrades. IEEE Ind. Appl. Mag., 7(5):41鈥?1. [doi:10.1109/2943.948531]CrossRef
    Na, J.B., Kim, Y.J., Jang, J.Y., et al., 2012. Design and tests of prototype hybrid superconducting fault current limiter with fast switch. IEEE Trans. Appl. Supercond., 22(3): 5602604. [doi:10.1109/TASC.2011.2182334]CrossRef
    Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., 2015a. Novel high performance DC reactor type fault current limiter. Electr. Power Syst. Res., 122:198鈥?07. [doi:10.1016/j. epsr.2015.01.005]CrossRef
    Radmanesh, H., Fathi, S.H., Gharehpetian, G.B., 2015b. Series transformer based solid state fault current limiter. IEEE Trans. Smart Grid, 6(4):1983鈥?991. [doi:10.1109/TSG.2015.2398365]CrossRef
    Tsuda, M., Mitani, Y., Tsuji, K., et al., 2001. Application of resistor based superconducting fault current limiter to enhancement of power system transient stability. IEEE Trans. Appl. Supercond., 11(1):2122鈥?125. [doi:10.1109/77.920276]CrossRef
    Vintan, M., 2008. Evaluating transmission towers potentials during ground faults. J. Zhejiang Univ.-Sci. A, 9(2):182鈥?89. [doi:10.1631/jzus.A072206]MATH CrossRef
    Wu, Z.L., Chen, P.P., Tan, L.Y., et al., 2001. Short circuit current limiter in AC network. J. Zhejiang Univ.-Sci., 2(1):41鈥?5. [doi:10.1631/jzus.2001.0041]CrossRef
    Yamaguchi, H., Kataoka, T., 2008. Current limiting characteristics of transformer type superconducting fault current limiter with shunt impedance and inductive load. IEEE Trans. Appl. Supercond., 18(2):668鈥?71. [doi:10. 1109/TASC.2008.921258]CrossRef
    Ye, L., Lin, L.Z., Juengst, K.P., 2002. Application studies of superconducting fault current limiters in electric power systems. IEEE Trans. Appl. Supercond., 12(1):900鈥?03. [doi:10.1109/TASC.2002.1018545]CrossRef
    Zhao, C., Lu, J.Z., Fang, Z., et al., 2010. Study of a novel fault current limiter on the basis of high speed switch and triggered vacuum switch. 5th Int. Conf. on Critical Infrastructure, p.1鈥?. [doi:10.1109/CRIS.2010.5617487]
  • 作者单位:Amir Heidary (1)
    Hamid Radmanesh (2) (3)
    Seyed Hamid Fathi (2)
    G. B. Gharehpetian (2)

    1. Electrical Engineering Department, Islamic Azad University, Takestan Branch, Takestan, Iran
    2. Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran
    3. Electrical Engineering Department, Aeronautical University of Science and Technology, Tehran, Iran
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
We propose a novel series transformer based diode-bridge-type solid state fault current limiter (SSFCL). To control the fault current, a series RLC branch is connected to the secondary side of an isolation series transformer. Based on this RLC branch, two current limiting modes are created. In the first mode, R and C are bypassed via a paralleled power electronic switch (insulated-gate bipolar transistor, IGBT) and L remains connected to the secondary side of the transformer as a DC reactor. In the second mode, the series reactor impedance is not enough to limit the fault current. In this case, the fault current can be controlled by selecting a proper on-off duration of the parallel IGBT, across the series damping resistor (R. and capacitor, which inserts high impedance into the line to limit the fault current. Then, by controlling the magnitude of the DC reactor current, the fault current is reduced and the voltage of the point of common coupling (PCC) is kept at an acceptable level. In addition, in the new SSFCL, the series RC branch, connected in parallel with the IGBT, serves as a snubber circuit for decreasing the transient recovery voltage (TRV) of the IGBT during on-off states. Therefore, the power quality indices can be improved. The measurement results of a built prototype are presented to support the simulation and theoretical studies. The proposed SSFCL can limit the fault current without any delay and successfully smooth the fault current waveform. Keywords Solid state fault current limiter (SSFCL) Power quality Voltage sag Point of common coupling (PCC) Isolation transformer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700