Acellular reactivity of polymeric dendrimer nanoparticles as an indicator of oxidative stress in vitro
详细信息    查看全文
  • 作者:Marcus A. Maher ; Humza Khalid ; Hugh J. Byrne
  • 关键词:Nanotoxicity ; Dendrimer nanoparticles ; Oxidative stress ; Acellular assay
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:3
  • 页码:695-703
  • 全文大小:831 KB
  • 参考文献:1.Project on Emerging Nanotechnologies (PEN) (2015) http://​www.​nanotechproject.​org/​ . Accessed 10 Nov 2015
    2.De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149CrossRef
    3.Jain KK, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142CrossRef
    4.Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Int J Pharm Biopharm 72:370–377CrossRef
    5.Oomen A, Bos P, Fernandes T, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, von der Kammer F, Kühnel D et al (2014) Concern-driven integrated toxicity testing strategies for nanomaterials - report of the NanoSafety Cluster Working Group 10. Nano Tox 8:334–338
    6.Meng H, Xia T, George S, Nel AE (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–1627CrossRef
    7.Clark KA, White RH, Silbergeld EK (2011) Predictive models for nanotoxicology: current challenges and future opportunities. Regul Toxicol Pharm 59:361–512CrossRef
    8.Organisation for Economic Co-Operation and Development (OECD) (2013) Guidance document on developing and assessing adverse outcome pathways, OECD, ENV/JM/MONO(2013)6
    9.Maher MA, Naha PC, Mukerjee SP, Byrne HJ (2014) Numerical simulations of in vitro nanoparticle toxicity – the case of poly(amido amine) dendrimers. Toxicol In Vitro 28:1449–1460CrossRef
    10.Mukherjee SP, Byrne HJ (2013) Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine 9:202–211CrossRef
    11.Organisation for Economic Co-Operation and Development (OECD) (2007) Guidance document on the validation of (quantitative) structure activity relationships [(Q)SAR] models, OECD, ENV/JM/MONO(2007)2
    12.Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRef
    13.Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Delivery Rev 60(9):1037–1055CrossRef
    14.Mukherjee SP, Davoren M, Byrne HJ (2010) In vitro mammalian cytotoxicological study of PAMAM dendrimers – towards quantitative structure activity relationships. Toxicol In Vitro 24:169–177CrossRef
    15.Mukherjee SP, Lyng FM, Garcia A, Davoren M, Byrne HJ (2010) Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol Appl Pharmacol 248:259–268CrossRef
    16.Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246:91–99CrossRef
    17.Naha PC, Davoren M, Casey A, Byrne HJ (2009) An ecotoxicological study of poly (amidoamine) dendrimers – towards quantitative structure activity relationships. Environ Sci Technol 43:6864–6869CrossRef
    18.Naha PC, Byrne HJ (2013) Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol 132–133:61–72CrossRef
    19.SyMO-Chem (2015) http://​www.​symo-chem.​nl/​ . Accessed 10 Nov 2015
    20.Dendritech (2015) http://​www.​dendritech.​com/​pamam.​html . Accessed 10 Nov 2015
    21.Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Lett 155:377–384CrossRef
    22.Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307CrossRef
    23.Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196CrossRef
    24.Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr (2000) The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. J Pharm Sci Technol 3:233–245
    25.Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237CrossRef
    26.Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Yousif MHM, Benter IF (2015) Cationic polyamidoamine dendrimers as modulators of EGFR signaling in vitro and in vivo. PLoS One. doi:10.​1371/​journal.​pone.​0132215
    27.Khalid H, Byrne M, Heise A, Mukherjee SP, O’Neill L, Byrne HJ (2015) Structural dependence of the in vitro cytotoxicity, oxidative stress and uptake mechanisms of poly(propylene imine) dendritic nanoparticles. J Appl Toxicol (in press)
    28.EC (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterials. Off J Eur Union 2011/696/EU, L275/38–L275/40
    29.Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557CrossRef
    30.Shi M, Kwon HS, Peng Z, Elder A, Yang H (2012) Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano 6(3):2157–2164CrossRef
    31.Sigma-Aldrich (2015) http://​www.​sigmaaldrich.​com/​catalog/​product/​sigma/​m7316?​lang=​en&​region=​IE . Accessed 10 Nov 2015
    32.Kim SY, Nishioka M, Taya M (2004) Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2. FEMS Microbiol Lett 236:109–114CrossRef
    33.Yeber MC, Rodriguez J, Freer J, Duran N, Mansilla HD (2000) Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41:1193–1197CrossRef
    34.Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516CrossRef
    35.Venkatachari P, Hopke PK, Grover BD, Eatough DJ (2005) Measurement of particle-bound reactive oxygen species in rubidoux aerosols. J Atmos Chem 50:49–58CrossRef
    36.Setareh-biotech (2015) http://​www.​setarehbiotech.​com/​details.​cfm?​ProdID=​158 . Accessed 10 Nov 2015
    37.Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRef
    38.He D (2002) Studies of PPI dendrimers – structures, properties and potential applications. MSc thesis, Marshall University, Huntington, West Virginia
    39.Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677CrossRef
    40.Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S, Hirai T, Akase T, Nagano K, Abe Y, Yoshioka Y, Kamada H, Itoh N, Tsunoda S, Tsutsumi Y (2011) Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1CrossRef
  • 作者单位:Marcus A. Maher (1) (2)
    Humza Khalid (1) (2)
    Hugh J. Byrne (1)

    1. FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
    2. School of Physics, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
The need for rapid and cost-effective pre-screening protocols of the toxicological response of the vast array of emerging nanoparticle types is apparent and the emerging consensus on the paradigm of oxidative stress by generation of intracellular reactive oxygen species as a primary source of the toxic response suggests the development of acellular assays to screen for nanoparticle surface reactivity. This study explores the potential of the monoamine oxidase A (MAO-A) enzyme-based assay with polymeric dendrimers as cofactors and serotonin as substrate, which generates H2O2, quantified by the conversion of the Carboxy-H2DCFDA dye to its fluorescent form. A range of generations of both PAMAM (poly(amidoamine)) (G4–G7) and PPI (poly(propylene imine)) (G0–G4) dendritic polymer nanoparticles are used as test particles to validate the quantitative nature of the assay response as a function of nanoparticle physico-chemical properties. The assay is well behaved as a function of dose over low dose ranges and the acellular reaction rate (ARR) is well correlated with the number of surface amino groups for the combined dendrimer series. For each series, the ARR is also well correlated with the previously documented cytotoxicity, although the correlation is substantially different for each series of dendrimers, pointing to the additional importance of cellular uptake rates in the determination of toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700