U formalism. For simplicity of interpretation, all calculations are carried out based on the assumption that structural relaxation in GDC occurred under isotropic strain states. According to the calculation of the energetics of vacancy formation, the formation energy shows the lowest value at dilative strain conditions, where the lattice structure is in the loosest state. Furthermore, the generated oxygen vacancy has a preferred migration path that is mainly controlled by the neighboring cation configuration." />
Lattice-strain effect on oxygen vacancy formation in gadolinium-doped ceria
详细信息    查看全文
  • 作者:Kiyong Ahn (1)
    Yong-Chae Chung (2)
    Kyung Joong Yoon (1)
    Ji-Won Son (1)
    Byung-Kook Kim (1)
    Hae-Weon Lee (1)
    Jong-Ho Lee (1)
  • 关键词:Strain ; GDC ; Ionic conductivity ; Vacancy ; Density functional theory
  • 刊名:Journal of Electroceramics
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:32
  • 期:1
  • 页码:72-77
  • 全文大小:494 KB
  • 参考文献:1. A. Trovarelli, C. De Leitenburg, M. Boaro, G. Dolcetti, Catal. Today 50, 353 (1999) CrossRef
    2. P. Jasinski, T. Suzuki, H.U. Anderson, Sensors Actuators B Chem. 95, 73 (2003) CrossRef
    3. T.H. Etsell, S.N. Flengas, Chem. Rev. 70, 339 (1970) CrossRef
    4. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129, 63 (2000) CrossRef
    5. K.R. Reddy, K. Karan, J. Electroceram. 15, 45 (2005) CrossRef
    6. D.A. Andersson, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson, Proc. Natl. Acad. Sci. U. S. A. 103, 3518 (2006) CrossRef
    7. M. Nakayama, M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009) CrossRef
    8. H. Deguchi, H. Yoshida, T. Inagaki, M. Horiuchi, Solid State Ionics 176, 1817 (2005) CrossRef
    9. P.P. Dholabhai, J.B. Adams, P. Crozier, R. Sharma, Phys. Chem. Chem. Phys. 12, 7904 (2010) CrossRef
    10. D. Marrocchelli, S.R. Bishop, H.L. Tuller, G.W. Watson, B. Yildiz, Phys. Chem. Chem. Phys. 14, 12070 (2012) CrossRef
    11. P.R.L. Keating, D.O. Scanlon, B.J. Morgan, N.M. Galea, G.W. Watson, J. Phys. Chem. C 116, 2443 (2012) CrossRef
    12. M. Nakayama, H. Ohshima, M. Nogami, M. Martin, Phys. Chem. Chem. Phys. 14, 6079 (2012) CrossRef
    13. H.L. Tuller, Solid State Ionics 131, 143 (2000) CrossRef
    14. C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Phys. Chem. Chem. Phys. 10, 4623 (2008) CrossRef
    15. A. Kushima, B. Yildiz, J. Mater. Chem. 20, 4809 (2010) CrossRef
    16. T.J. Pennycook, M.J. Beck, K. Varga, M. Varela, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010) CrossRef
    17. S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino, Small 6, 1863 (2010) CrossRef
    18. N. Schichtel, C. Korte, D. Hesse, J. Janek, Phys. Chem. Chem. Phys. 11, 3043 (2009) CrossRef
    19. C.-G. Kuo, H.-H. Huang, C.-F. Yang, Ceram. Int. 37, 2037 (2011) CrossRef
    20. K. Otsuka, A. Kuwabara, A. Nakamura, T. Yamamoto, K. Matsunaga, T. Ikuhara, Appl. Phys. Lett. 82, 877 (2003) CrossRef
    21. K.-R. Lee, K. Ahn, Y.-C. Chung, J.-H. Lee, H.-I. Yoo, Solid State Ionics 229, 45 (2012) CrossRef
    22. S. Sanna, V. Esposito, D. Pergolesi, A. Orsini, A. Tebano, S. Licoccia, G. Balestrino, E. Traversa, Adv. Funct. Mater. 19, 1713 (2009) CrossRef
    23. K. Mohan Kant, V. Esposito, N. Pryds, Appl. Phys. Lett. 97, 143110 (2010) CrossRef
    24. A. Kossoy, A.I. Frenkel, Q. Wang, E. Wachtel, I. Lubomirsky, Adv. Mater. 22, 1659 (2010) CrossRef
    25. R.A. De Souza, A. Ramadan, S. H?rner, Energy Environ. Sci. 5, 5445 (2012) CrossRef
    26. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) CrossRef
    27. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) CrossRef
    28. P.E. Bl?chl, Phys. Rev. B 50, 17953 (1994) CrossRef
    29. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) CrossRef
    30. H. Pinto, M.H. Mintz, M. Melamud, H. Shaked, Phys. Lett. 88A, 81 (1982) CrossRef
    31. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) CrossRef
    32. V. Kanchana, G. Vaitheeswaran, A. Svane, A. Delin, J. Phys. Condens. Matter 18, 9615 (2006) CrossRef
    33. M. Mavrikakis, B. Hammer, J.K. N?rskov, Phys. Rev. Lett. 81, 2819 (1998) CrossRef
    34. B. Hammer, J.K. N?rskov, in / Chemisorption and Reactivity on Supported Clusters and Thin Films, ed. by R.M. Lambert, G. Pacchioni (Kluwer Academic Publishers, Dordrecht, 1997), pp. 285-51 CrossRef
  • 作者单位:Kiyong Ahn (1)
    Yong-Chae Chung (2)
    Kyung Joong Yoon (1)
    Ji-Won Son (1)
    Byung-Kook Kim (1)
    Hae-Weon Lee (1)
    Jong-Ho Lee (1)

    1. High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
    2. Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
  • ISSN:1573-8663
文摘
By first-principles calculations using the projector-augmented-wave (PAW) method, the oxygen vacancy formation energy of gadolinium-doped ceria (GDC) is calculated as a function of lattice strain comprising the range from compressive (?.5?%) to dilative (1.5?%) strain. Employing the generalized gradient approximation (GGA) for the exchange correlation potential and including the strong on-site Coulombic repulsion U, the calculations are performed within the (GGA)--em class="a-plus-plus">U formalism. For simplicity of interpretation, all calculations are carried out based on the assumption that structural relaxation in GDC occurred under isotropic strain states. According to the calculation of the energetics of vacancy formation, the formation energy shows the lowest value at dilative strain conditions, where the lattice structure is in the loosest state. Furthermore, the generated oxygen vacancy has a preferred migration path that is mainly controlled by the neighboring cation configuration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700