Constraints regarding gold deposition in episyenites: the Permian episyenites associated with the Villalcampo Shear Zone, central western Spain
详细信息    查看全文
  • 作者:Francisco Javier López-Moro (1)
    María Candelas Moro (1)
    Susana María Timón (3)
    María Luisa Cembranos (1)
    Juan Cózar (2)
  • 关键词:Gold ; bearing episyenites ; Sulphide deposition ; Chemical uraninite age ; Fluid inclusions ; Stable isotopes ; Villalcampo Shear Zone
  • 刊名:International Journal of Earth Sciences
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:102
  • 期:3
  • 页码:721-744
  • 全文大小:1511KB
  • 参考文献:1. André AS, Lespinasse M, Cathelineau M, Boiron MC, Cuney M, Leroy J (1999) Percolations de fluides tardi-hercyniens dans le granite de Saint Sylvestre (Nord-Ouest du Massif Central Fran?ais): données des inclusions fluides sur un profil. C R Acad Sci Paris 329:23-0
    2. Antona JF (1991) Fluidos mineralizadores en los yacimientos de oro de Saucelle y El Cabaco. PhD Thesis, Univ of Salamanca
    3. Cathelineau M, Boiron MC, Essarraj S, Barakat A, Cuney M, Dubessy J, Lespinasse M, Marignac C, Castroviejo R, García-Palomero F, Ayala-Leal J, Capio-Cuellar V, Pereira E, Castro P, Fereira N, Mereiles C, Urbano R, Florido P, Toyos JM, Norohna F, Doria A, Nogueira P, Ribeira MA, Yardley B, Banks D, Barriga, F, Matteus A (1993) Multidisciplinary studies of Au-vein formation. Application to the western part of the Hesperian Massif (Spain-Portugal). Multiannual R & D programme (1990-992) on “Primary raw materials and recycling of non-ferrous metals-of de C.E.C
    4. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323-33 p://dx.doi.org/10.1007/s004100050159">CrossRef
    5. Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521-52 p://dx.doi.org/10.1093/petrology/37.3.521">CrossRef
    6. Beach A (1980) Retrogressive metamorphic processes in shear zones with special reference to the Lewisian complex. J Struct Geol 2:257-63 p://dx.doi.org/10.1016/0191-8141(80)90058-9">CrossRef
    7. Béziak D, Dubois M, Debat P, Nikiéma S, Salvi S, Tollon F (2008) Gold metallogeny in the Birimian craton of Burkina Faso (West Africa). J Afr Earth Sci 50:215-33 p://dx.doi.org/10.1016/j.jafrearsci.2007.09.017">CrossRef
    8. Béziat D, Bourges F, Debat P, Lompo M, Tollon F, Zonou S (1998) Albitites et ‘‘listvénites’- sites de concentration aurifère inédits dans les ceintures de roches vertes birimiennes fortement hydro- thermalisées du Burkina Faso. Bull Soc Geol Fr 169:563-71
    9. Boiron MC, Essarraj S, Sellier E, Cathelineau M, Lespinasse M, Poty B (1992) Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim Cosmochim Acta 56:175-85 p://dx.doi.org/10.1016/0016-7037(92)90125-3">CrossRef
    10. Boiron MC, Cathelineau M, Banks DA, Yardley BWD, Noronha F, Miller MF (1996) P-T-X conditions of late Hercynian fluid penetration an the origin of granite-hosted gold quartz veins in northwestern Iberia: a multidisciplinary study of fluid inclusions and their chemistry. Geochim Cosmochim Acta 60:43-7 p://dx.doi.org/10.1016/0016-7037(95)00364-9">CrossRef
    11. Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust; consequences for gold deposition. Chem Geol 194:119-41 p://dx.doi.org/10.1016/S0009-2541(02)00274-7">CrossRef
    12. Boulvais P, Ruffet G, Cornichet J, Mermet M (2007) Cretaceous albitization and dequartzification of Hercynian peraluminous granite in the Salvezines Massif (French Pyrénées). Lithos 93:89-06 p://dx.doi.org/10.1016/j.lithos.2006.05.001">CrossRef
    13. Bowles JFW (1990) Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem Geol 83:47-3 p://dx.doi.org/10.1016/0009-2541(90)90139-X">CrossRef
    14. Brenan JM, Shaw HF, Phinney DL, Ryerson FJ (1994) Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet Sci Lett 128:327-39 p://dx.doi.org/10.1016/0012-821X(94)90154-6">CrossRef
    15. Brown WL, Parsons I (1989) Alkali feldspars; ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineral Mag 53:25-2 p://dx.doi.org/10.1180/minmag.1989.053.369.03">CrossRef
    16. Bucher K, Frey M (1994) Petrogenesis of metamorphic rocks. Springer, Berlin, Heidelberg
    17. Caballero JM (1999) Modelización del proceso de episienitización (decuarcificación-albitización): formulación cinética y transporte advectivo en medio continuo. Estud Geol 55:9-6 p://dx.doi.org/10.3989/egeol.99551-2179">CrossRef
    18. Caballero JM, Casquet C, Galindo C, González-Casado JM, Pankhurst R, Tornos F (1993) Geocronología por el método Rb-Sr de las episienitas de la Sierra del Guadarrama, S.C.E., Espa?a. Geogaceta 13:16-8
    19. Caballero JM, González-Casado JM, Casquet C, Galindo C, Tornos F (1996) Episienitas de la Sierra de Guadarrama: un proceso hidrotermal regional de edad Pérmico Inferior ligado al inicio de la extensión alpina. Cuad Geol Ibérica 20:183-04
    20. Cameron-Schiman M (1978) Electron microprobe study of uranium minerals and its application to some Canadian deposits. PhD Thesis, Univ. Alberta, Edmonton
    21. Capdevila R, Corretgé LG, Floor P (1973) Les granito?des varisques de la Meseta Ibérique. Bull Soc Geol Fr 15:209-28
    22. Casillas R, Nagy G, Pantó G, Br?ndle J, Fórizs I (1995) Occurrence of Th, U, Y, Zr, and REE-bearing accessory minerals in late-Variscan granitic rocks from the Sierra de Guadarrama (Spain). Eur J Mineral 7:989-006
    23. Casquet C, Caballero JM, Galindo C, Tornos F (1992) A revised model for the formation of dequartzified and alkalinized granites. In: Kharaka YK, Maest AS (eds) Water-rock interaction. Balkema, Rotterdam, pp 1481-483
    24. Castorina F, Masi U, Padalino G, Palomba M (2006) Constraints from geochemistry and Sr-Nd isotopes for the origin of albitite deposits from Central Sardinia (Italy). Miner Depos 41:323-38 p://dx.doi.org/10.1007/s00126-006-0049-7">CrossRef
    25. Castro A, Corretgé LG, De la Rosa JD, Enrique P, Martínez FJ, Pascual E, Lago M, Arranz E, Galé C, Fernández C, Donaire T, López S (2002) Palaeozoic magmatism. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society of London, London, pp 117-53
    26. Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945-65 p://dx.doi.org/10.1093/petrology/27.4.945">CrossRef
    27. Cathelineau M (1987) U-Th-REE mobility during albitization and quartz dissolution in granitoids: evidence from south-east French Massif Central. Bull Miner 110:249-59
    28. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471-85 p://dx.doi.org/10.1180/claymin.1988.023.4.13">CrossRef
    29. Charoy B, Pollard PJ (1989) Albite-rich, silica-depleted metasomatic rocks at Emuford, Northeast Queensland: mineralogical, geochemical and fluid inclusion constraints on hydrothermal evolution and tin mineralization. Econ Geol 84:1850-874 p://dx.doi.org/10.2113/gsecongeo.84.7.1850">CrossRef
    30. Cheilletz AG, Giuliani G (1982) Role de la déformation du granite dans la genèse des episyénites feldspathiques des massifs de Lovios-Geres (Galice) er des Zaèr (Maroc Central). Miner Depos 17:387-00 p://dx.doi.org/10.1007/BF00204467">CrossRef
    31. Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057-067 p://dx.doi.org/10.1029/JB077i017p03057">CrossRef
    32. Costi R, Dall’Agnol R, Borges RMK, Minuzzi ORR, Teixeira JT (2002) Tin-bearing sodic episyenites associated with the Proterozoic, A-type água Boa granite, Pitinga mine, Amazonian Craton, Brazil. Gondwana Res 5:435-51 p://dx.doi.org/10.1016/S1342-937X(05)70734-6">CrossRef
    33. Dallmeyer RD, Martínez-Catalán JR, Arenas R, Gil-Ibarguchi JI, Gutiérrez-Alonso G, Farias P, Bastida F, Aller J (1997) Diachronous Variscan tectonothermal activity in the NW Iberian Massif; evidence from p class="a-plus-plus">40p>Ar/p class="a-plus-plus">39p>Ar dating of regional fabrics. Tectonophysics 277:307-37 p://dx.doi.org/10.1016/S0040-1951(97)00035-8">CrossRef
    34. Dipple GM, Ferry JM (1992) Metasomatism and fluid flow in ductile fault zones. Contrib Mineral Petrol 112:149-64 p://dx.doi.org/10.1007/BF00310451">CrossRef
    35. Escuder Viruete J, Hernáiz Huerta PP, Valverde-Vaquero P, Rodríguez Fernández R, Dunning G (1998) Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics 290:87-09 p://dx.doi.org/10.1016/S0040-1951(98)00014-6">CrossRef
    36. Escuder Viruete J, Indares A, Arenas R (2000) P–T paths derived from garnet growth zoning in an extensional setting: an example from the Tormes Gneiss Dome (Iberian Massif, Spain). J Petrol 41:1489-515 p://dx.doi.org/10.1093/petrology/41.10.1489">CrossRef
    37. Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199-212 p://dx.doi.org/10.1016/0016-7037(78)90114-X">CrossRef
    38. Ferkous K, Leblanc M (1995) Gold mineralization in the West Hoggar shear zone, Algeria. Miner Depos 30:211-24 p://dx.doi.org/10.1007/BF00196357">CrossRef
    39. Fernández-Turiel JL (1987) Aspectos geológicos y metalogenéticos del Batolito de Ricobayo y Complejo de Villaseco-Pereruela y sus mineralizaciones estanniferas asociadas (Zamora). PhD Thesis, Univ Barcelona, Spain
    40. Fontbote L (2001) Recommended abbreviations for studies on ore deposits. plus-plus" href="http://www.unige.ch/sciences/terre/mineral/fontbote/opaques/ore_abbreviations.html">http://www.unige.ch/sciences/terre/mineral/fontbote/opaques/ore_abbreviations.html
    41. Friedrich MH, Cuney M, Poty B (1987) Uranium geochemistry in peraluminous leucogranites. In: Poty B, Pagel M (eds) Concentration mechanism of uranium in geological environments—a conference report. Uranium 3:353-85
    42. Giletti BJ (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218-28 p://dx.doi.org/10.1016/0012-821X(86)90162-7">CrossRef
    43. González Casado JM, Casquet C, Caballero JM, Galindo C, Quílez E, Tornos F (1993) Análisis de la fracturación asociada a las alteraciones de tipo greisen y episienita en la Sierra del Guadarrama. Geogaceta 13:53-6
    44. González-Clavijo E, Díez-Balda MA, Alvarez F (1993) Structural study of a semi-ductile strike-slip system in the Central Iberian Zone (Variscan fold belt, Spain): structural controls on gold deposits. Geol Rundsch 82:448-60 p://dx.doi.org/10.1007/BF00212409">CrossRef
    45. Grant JA (1986) The isocon diagram—a simple solution to Gresens-equation for metasomatic alteration. Econ Geol 81:1976-982 p://dx.doi.org/10.2113/gsecongeo.81.8.1976">CrossRef
    46. Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries T, Collins AS, Johnston ST, González-Clavijo E, Pastor-Galán D, Weill AB (2010) Absolute age (p class="a-plus-plus">40p>Ar*-p class="a-plus-plus">39p>Ar and U-Pb) constrains on orocline development and related lithospheric delamination in the Iberian Armorican Arc. E-Terra 23:1-
    47. Hecht L, Thuro K, Plinninger R, Cuney M (1999) Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Koenigshain Granites, northern Bohemian Massif, Germany. Int J Earth Sci 88:236-52 p://dx.doi.org/10.1007/s005310050262">CrossRef
    48. Hovis GL, Delbove F, Bose MR (1991) Gibbs energies and entropies of K-Na mixing for alkali feldspar from phase equilibrium data: implications for feldspar solvi and short-range order. Am Mineral 76:725-68
    49. Iglesias M, Choukrone P (1980) Shear zones in the Iberian arc. J Struct Geol 2:63-8 p://dx.doi.org/10.1016/0191-8141(80)90035-8">CrossRef
    50. Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489-08 p://dx.doi.org/10.1016/S0016-7037(99)00027-7">CrossRef
    51. Jébrak M (1992) Les gisements d’or des tonalites archéennes (Abitibi, Québec). Miner Depos 27:1- p://dx.doi.org/10.1007/BF00196075">CrossRef
    52. Julivert M, Fontbote JM, Ribeiro A, Conde L (1974) Mapa tectónico de la península Ibérica y Baleares, Escala 1/1 000 000. Instituto Geológico Minero de Espa?a
    53. Junta de Castilla y León (1986) Estudio geológico-minero en el área de Pino de Oro (Provincia de Zamora). Fase I, pp 1-38
    54. Kennedy GC (1950) A portion of the system silica-water. Ec Geol Bull Soc Econ Geol 45:629-53 p://dx.doi.org/10.2113/gsecongeo.45.7.629">CrossRef
    55. Kerkhof AM, Thiéry R (2001) Carbonic inclusions. Lithos 55:49-8 p://dx.doi.org/10.1016/S0024-4937(00)00038-4">CrossRef
    56. Knipe SW, Foster RP, Stanley CJ (1992) The role of sulphide surfaces in the sorption of precious metals from hydrothermal fluids. Trans Inst Min Metall, Sect B 101:B83–B88
    57. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277-79
    58. La Roche H (1964) Sur l’expression graphique des relations entre le composition chimique et la composition mineralogique quantitative des roches cristallines. Sci Terre 9:293-37
    59. La Roche H, Leterrier J, Grand-Claude P, Marchal M (1980) A classification of volcanic and plutonic rocks using Rplus-plus">1–Rplus-plus">2 diagram and major element analyses. Its relationship with current nomenclature. Chem Geol 29:183-10 p://dx.doi.org/10.1016/0009-2541(80)90020-0">CrossRef
    60. Lee MR, Parsons I (1997) Dislocation formation and albitization in alkali feldspars from the Shap Granite. Am Mineral 82:557-70
    61. Lee MR, Waldron KA, Parsons I (1995) Exsolution and alteration microtextures in alkali feldspar phenocrysts from the Shap granite. Mineral Mag 59:63-8 p://dx.doi.org/10.1180/minmag.1995.59.394.06">CrossRef
    62. Leroy J (1978) Métallogenèse des gisements d’uranium de la division de La Crouzille (Cogema-Nord Limousin-France). Sci Terre 36:1-76
    63. Leroy J (1984) Episyénitization dans le gisement d’uranium du Bernardan (Marche): comparation avec les gisements similaires du nord-ouest du Massif Central Fran?ais. Miner Depos 19:26-5 p://dx.doi.org/10.1007/BF00206594">CrossRef
    64. Leroy J, Turpin L (1988) REE, Th and U behaviour during hydrothermal and supergene processes in a granitic environment. Chem Geol 68:239-51 p://dx.doi.org/10.1016/0009-2541(88)90024-1">CrossRef
    65. López-Moro FJ (2012) EASYGRESGRANT—a Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Comput Geosci 39:191-96 p://dx.doi.org/10.1016/j.cageo.2011.07.014">CrossRef
    66. López-Moro FJ, López-Plaza M, Romer RL (2012) Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, western Spain. Int J Earth Sci 101:1273-298 p://dx.doi.org/10.1007/s00531-011-0728-1">CrossRef
    67. López-Plaza M (1982) Contribución al conocimiento de la dinámica de los cuerpos graníticos en la penillanura salmantino-zamorana. PhD Thesis, Univ Salamanca, Spain
    68. López-Ruiz J, Cebriá JM (1990) Geoquímica de los procesos magmáticos. Rueda, Madrid
    69. Ludwig KR (2000) Isoplot/Ex- A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center. Special Publication No 1a, pp 1-7
    70. McCaig AM (1988) Deep fluid circulation in fault zones. Geology 16:867-70 p://dx.doi.org/10.1130/0091-7613(1988)016<0867:DFCIFZ>2.3.CO;2">CrossRef
    71. McCaig AM (1997) The geochemistry of volatile fluid flow in shear zones. In: Holness MB (ed) Deformation-enhanced fluid transport in the earth’s crust and mantle. Chapman & Hall, London, pp 227-66
    72. McCaig AM, Wickham SM, Taylor HP (1990) Deep fluid circulation in alpine shear zones, Pyrenees, France: field and oxygen isotope studies. Contrib Mineral Petrol 106:41-0 p://dx.doi.org/10.1007/BF00306407">CrossRef
    73. M?ller P, Kersten G (1994) Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces. Miner Depos 29:404-13 p://dx.doi.org/10.1007/BF01886958">CrossRef
    74. Noronha F, Cathelineau M, Boiron MC, Banks DA, Dória A, Ribeiro MA, Nogueira P, Guedes A (2000) A three stage fluid flow model for Variscan gold metallogenesis in northern Portugal. J Geochem Explor 71:209-24 p://dx.doi.org/10.1016/S0375-6742(00)00153-9">CrossRef
    75. Parsons I, Lee MR (2009) Mutual replacement reactions in alkali feldspars I: microtextures and mechanism. Contrib Mineral Petrol 157:641-61 p://dx.doi.org/10.1007/s00410-008-0355-4">CrossRef
    76. Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin
    77. Perini G, Cebriá JM, López-Ruiz JM, Doblas M (2004) Permo-Carboniferous magmatism in the variscan belt of Spain and France: implications on mantle sources. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen B (eds) Permo-Carboniferous magmatism and rifting in Europe, vol 223. Geol Soc London Spec Publ, London, pp 415-38
    78. Petersson J, Eliasson T (1997) Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, southwest Sweden. Lithos 42:123-46 p://dx.doi.org/10.1016/S0024-4937(97)00040-6">CrossRef
    79. Petersson J, Whitehouse MJ, Eliasson T (2001) Ion microprobe U-Pb dating of hydrothermal xenotime from an episyenite: evidence for rift-related reactivation. Chem Geol 175:703-12 p://dx.doi.org/10.1016/S0009-2541(00)00338-7">CrossRef
    80. Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of monazite, titanite and zircon. J Geol Soc London 167:751-67 p://dx.doi.org/10.1144/0016-76492009-144">CrossRef
    81. Ranchin G (1968) Contribution à l’étude de la répartition de l’uranium à l’état de traces dans les roches granitiques saines les uranites à teneur élevée du Massif de Saint-Sylvestre (Limousin-Massif Central Fran?ais). Sci Terre 13:161-05
    82. Recio C, Fallick AE, Ugidos JM (1991) Sulphur isotope systematics of granitoids and associated rocks from the ávila-La Alberca area (Western Sistema Central, Spain). Rev Geol Espa?a 4:371-81
    83. Recio C, Fallick AE, Ugidos JM (1992) A stable isotopic (δp class="a-plus-plus">18p>O, δD) study of the late-Hercynian granites and their host-rocks in the Central Iberian Massif (Spain). Trans R Soc Edinburgh: Earth Sci 83:247-57 p://dx.doi.org/10.1017/S0263593300007938">CrossRef
    84. Recio C, Fallick AE, Ugidos JM, Stephens WE (1997) Characterization of multiple fluid-granite interaction processes in the episyenites of Avila-Béjar, Central Iberian Massif, Spain. Chem Geol 143:127-44 p://dx.doi.org/10.1016/S0009-2541(97)00106-X">CrossRef
    85. Rhede D, Wendt I, F?erster HJ (1996) A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130:247-53 p://dx.doi.org/10.1016/0009-2541(96)00015-0">CrossRef
    86. Rogers JJM, Adams JAS (1969) Uranium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin
    87. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, UK
    88. Scarrow JH, Bea F, Montero P, Molina JF, Vaughan APM (2006) A precise late Permian 40Ar/39Ar age for Central Iberian camptonitic lamprophyres. Geol Acta 4:451-59
    89. Selverstone J, Morteani G, Staude JM (1991) Fluid channelling during ductile shearing: transformation of granodiorite into aluminous schist in the Tauern Window, eastern Alps. J Metamorph Geol 9:419-31 p://dx.doi.org/10.1111/j.1525-1314.1991.tb00536.x">CrossRef
    90. Smit CA, Van Reenen DD (1997) Deep crustal shear zones, high-grade tectonites, and associated metasomatic alteration in the Limpopo Belt, South Africa: implications for deep crustal processes. J Geol 105:37-7 p://dx.doi.org/10.1086/606146">CrossRef
    91. Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiOplus-plus">2-Alplus-plus">2Oplus-plus">3-FeO-MgO-Kplus-plus">2O-Hplus-plus">2O. Contrib Mineral Petrol 101:149-64 p://dx.doi.org/10.1007/BF00375302">CrossRef
    92. Starling A, Gilligan JM, Carter AHC, Foster RP, Saunder RA (1989) High-temperature hydrothermal precipitation of precious metals on the surface of pyrite. Nature 340:298-00 p://dx.doi.org/10.1038/340298a0">CrossRef
    93. Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a `natural laboratory-for crystal plastic deformation of quartz over a temperature range from 250 to 700?°C. J Struct Geol 24:1861-884 p://dx.doi.org/10.1016/S0191-8141(02)00035-4">CrossRef
    94. Streit JE, Cox SF (1998) Fluid infiltration and volume change during mid-crustal mylonitization of Proterozoic granite, King Island, Tasmania. J Metamorph Geol 16:197-12 p://dx.doi.org/10.1111/j.1525-1314.1998.00129.x">CrossRef
    95. Theodore TG, Blair WN, Nash JT (1987) Geology and gold mineralization of the Gold Basin-Lost Basin Mining districts, Mohave County, Arizona. US Geol Surv Prof Pap 1361:1-70
    96. Tornos F, Delgado A, Casquet C, Galindo C (2000) 300 million years of episodic hydrothermal activity; stable isotope evidence from hydrothermal rocks of the eastern Iberian central system. Miner Depos 35:551-69 p://dx.doi.org/10.1007/s001260050261">CrossRef
    97. Toros M (1981) Les granito?des et les g?tes d’étain associés dans leur contexte lithostraigraphique et métamorphique à l’ouest de Zamora (Massif Hespérique, Espagne). PhD Thesis, Univ Lausanne
    98. Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chem Geol 88:85-8 p://dx.doi.org/10.1016/0009-2541(90)90105-G">CrossRef
    99. Vallance J, Boiron MC, Cathelineau M, Fourcade S, Varlet M, Marignac C (2004) The granite hosted gold deposit of Moulin de Chéni (Saint-Yrieix district, Massif Central, France): petrographic, structural, fluid inclusion and oxygen isotope constraints. Miner Depos 39:265-81 p://dx.doi.org/10.1007/s00126-003-0396-6">CrossRef
    100. Valverde-Vaquero P, Díez Balda MA, Díez Montes A, D?rr W, Escuder Viruete J, González-Clavijo E, Maluski H, Rodríguez-Fernández LR, Rubio F, Villar P (2006) Timing of Variscan metamorphism and the Central Iberian paradox. Geophys Res Abstr 8:01309
    101. Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079-091 p://dx.doi.org/10.1016/0016-7037(93)90306-H">CrossRef
  • 作者单位:Francisco Javier López-Moro (1)
    María Candelas Moro (1)
    Susana María Timón (3)
    María Luisa Cembranos (1)
    Juan Cózar (2)

    1. Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
    3. Dpto. de Investigación en Recursos Geológicos, Instituto Geológico y Minero de Espa?a, Unidad de Salamanca, C/Azafranal 48, 1o A, 37001, Salamanca, Spain
    2. CIEMAT, Avd. Complutense 22, 28004, Madrid, Spain
  • ISSN:1437-3262
文摘
The Villalcampo Shear Zone (around 307?Ma) shows second-order shear zones (420-90?°C) with gold ore bodies hosted by episyenites, which consist of albite episyenites (albitites) and albite-Kfs episyenites, both types with different contents in sulphides and gold. Mass transfer modelling supports higher fluid/rock ratios in albitites than in albite-Kfs episyenites. The study of worldwide barren and gold-bearing episyenites reveals abundant sulphides in the latter as a distinguishing feature. The electrochemical processes at the surface of sulphide would have enhanced gold precipitation, sulphides working as a gold trap. A complex fluid history occurred in gold ore bodies hosted by episyenites, although in essence, it was similar to quartz-sealed faults hosting late Variscan gold deposits: (a) an early fluid equilibrated with the metamorphic pile with sulphides or with a metamorphic fingerprint, resulted in a sulphide deposition and (b) a shallower fluid reservoir of meteoric origin provided gold deposition. In contrast to earlier claims regarding episyenite fluid flow, a down temperature and probably an upwards fluid flow are proposed for the episyenitization process, also in keeping with the early stages of fluid flow in quartz-sealed faults. Fluid inclusions in albite confirm that the striking coupled quartz leaching albitization processes occurred around 400?°C and 60?MPa, crosscutting the retrograde solubility field of silica and yielding a vuggy rock. Initially, albite, and later quartz and sulphide, filled the vugs from the same or a very similar fluid. Uraninites deposited during the albitization and probably the onset of the sulphide deposition afforded the same age (270?±?12?Ma) as other Spanish episyenites, confirming a synchronous and a regional-scale process and ruling out a relationship with the granite cooling history (324?±?11?Ma).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700