Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach
详细信息    查看全文
  • 作者:Grigori Chapiro ; Angel E. R. Gutierrez…
  • 关键词:Moving boundary problems ; Nonlinear complementarity algorithms ; Combustion ; Diffusion ; 35R37 ; 90C33 ; 80A25
  • 刊名:Journal of Optimization Theory and Applications
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:168
  • 期:2
  • 页码:534-550
  • 全文大小:772 KB
  • 参考文献:1.Crank, J.: Free and Moving Boundary Problems. The Universities Press, Oxford (1984)MATH
    2.Ferris, M., Pang, J.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(1), 669–713 (1997)CrossRef MathSciNet MATH
    3.Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, Belmont (1989)MATH
    4.Mazorche, S., Herskovits, J.: A new interior point algorithm for nonlinear complementarity problems. In: Proceedings of 6 World Congress on Structural and Multidisciplinary Optimization. Rio de Janeio, Brasil (2005)
    5.Chapiro, G., Mazorche, S.R., Herskovits, J., Roche, J.R.: Solution of the nonlinear parabolic problem using nonlinear complementarity algorithm (fda-ncp). In: Mecánica Computacional, vol. XXIX, 20, pp. 2141–2153 (2010)
    6.Gharbia, I.B., Jaffré, J.: Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 99, 28–36 (2014)CrossRef
    7.Chen, C., Mangasarian, O.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5(2), 97–138 (1996)CrossRef MathSciNet MATH
    8.Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34(8), 957–966 (2011)CrossRef
    9.Gupta, S.C.: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier, Amsterdam (2003)
    10.Herskovits, J.: A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99(1), 121–146 (1998)CrossRef MathSciNet MATH
    11.Mazorche, S., Herskovits, J.: A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics. Struct. Multidiscip. O. 37(5), 435–446 (2009)CrossRef MathSciNet MATH
    12.Morton, K., Mayers, D.: Numerical Solutions of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)CrossRef
    13.Chapiro, G., Mailybaev, A.A., Souza, A., Marchesin, D., Bruining, J.: Asymptotic approximation of long-time solution for low-temperature filtration combustion. Comput. Geosci. 16, 799–808 (2012)CrossRef
    14.Bruining, J., Mailybaev, A., Marchesin, D.: Filtration combustion in wet porous medium. SIAM J. Appl. Math. 70, 1157–1177 (2009)CrossRef MathSciNet MATH
    15.Crank, J., Gupta, R.: A moving boundary problem arising from the diffusion of oxygen in absorbing tissue. IMA J. Appl. Math. 10(1), 19–33 (1972)CrossRef MathSciNet MATH
    16.Gupta, R., Kumar, D.: Variable time step methods for one-dimensional Stefan problem with mixed boundary condition. Int. J. Heat Mass Transf. 24, 251–259 (1981)CrossRef MATH
    17.Ahmed, S.: A numerical method for oxygen diffusion and absorption in a sike cell. Appl. Math. Comput. 173(1), 668–682 (2006)CrossRef MathSciNet MATH
    18.Boureghda, A.: Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary. Commun. Numer. Methods Eng. 22(9), 933–942 (2006)CrossRef MATH
    19.Çatal, S.: Numerical approximation for the oxygen diffusion problem. Appl. Math. Comput. 145(2–3), 361–369 (2003)CrossRef MathSciNet MATH
    20.Gupta, R., Banik, N.: Approximate method for the oxygen diffusion problem. Int. J. Heat Mass Transf. 32(4), 781–783 (1989)CrossRef
    21.Hansen, E., Hougaard, P.: On a moving boundary problem from biomechanics. IMA J. Appl. Math. 13(3), 385–398 (1974)CrossRef MATH
    22.Baiocchi, C., Pozzi, G.: An evolution variational inequality related to a diffusion–absorption problem. Appl. Math. Optim. 2(4), 304–314 (1975)CrossRef MathSciNet
    23.Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, London (1984)MATH
    24.Gupta, R.S.: Ph.D. thesis, Brunel University (1973)
    25.Akkutlu, I., Yortsos, Y.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134, 229–247 (2003)CrossRef
    26.Chapiro, G., Bruining, J.: Enhanced recovery of shale gas through combustion. J. Petrol. Sci. Eng. 127, 179–189 (2015)CrossRef
    27.Wahle, C., Matkowsky, B., Aldushin, A.: Effects of gas-solid nonequilibrium in filtration combustion. Combust. Sci. Technol. 175, 1389–1499 (2003)CrossRef
    28.LeVeque, R.J.: Numerical Methods for Conservation Laws, vol. 132. Springer, Berlin (1992)CrossRef MATH
    29.Chapiro, G., Marchesin, D., Schecter, S.: Combustion waves and Riemann solutions in light porous foam. J. Hyperb. Differ. Equ. 11(02), 295–328 (2014)CrossRef MathSciNet MATH
    30.Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)MATH
  • 作者单位:Grigori Chapiro (1)
    Angel E. R. Gutierrez (2)
    José Herskovits (3) (4)
    Sandro R. Mazorche (1)
    Weslley S. Pereira (1)

    1. Department of Mathematics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
    2. Instituto de Matemática y Ciencias Afines (IMCA), Lima, Peru
    3. Department of Mechanical and Materials Engineering, Military Institute of Engineering, Rio de Janeiro, Brazil
    4. Mechanical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
  • 刊物主题:Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory;
  • 出版者:Springer US
  • ISSN:1573-2878
文摘
Parabolic-type problems, involving a variational complementarity formulation, arise in mathematical models of several applications in Engineering, Economy, Biology and different branches of Physics. These kinds of problems present several analytical and numerical difficulties related, for example, to time evolution and a moving boundary. We present a numerical method that employs a global convergent nonlinear complementarity algorithm for solving a discretized problem at each time step. Space discretization was implemented using both the finite difference implicit scheme and the finite element method. This method is robust and efficient. Although the present method is general, at this stage we only apply it to two one-dimensional examples. One of them involves a parabolic partial differential equation that describes oxygen diffusion problem inside one cell. The second one corresponds to a system of nonlinear differential equations describing an in situ combustion model. Both models are rewritten in the quasi-variational form involving moving boundaries. The numerical results show good agreement when compared to direct numerical simulations. Keywords Moving boundary problems Nonlinear complementarity algorithms Combustion Diffusion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700