Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin
详细信息    查看全文
  • 作者:J. C. Maciel ; A. A. D. Mercês ; M. Cabrera ; W. T. Shigeyosi…
  • 关键词:Magnetic nanoparticles ; PANI ; Trypsin ; Biomedical applications
  • 刊名:Hyperfine Interactions
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:237
  • 期:1
  • 全文大小:1,520 KB
  • 参考文献:1.Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P.: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)CrossRef
    2.Daou, T.J., Grenèche, J.M., Pourroy, G., Buathong, B., Derory, A., Ulhaq-Bouillet, C., Donnio, B., Guillon, D., Begin-Colin, S.: Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem. Mater. 20, 5869–5875 (2008)CrossRef
    3.Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., Shao, L., Haldolaarachchige, N., Young, D.P., Wei, S., Guo, Z.: Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53, 801–809 (2012)CrossRef
    4.Salado, J., Insausti, M., Lezama, L., de Muro, I.G., Goikolea, E., Rojo, T.: Preparation and characterization of monodisperse Fe3O4 nanoparticles: na electron magnetic resonance study. Chem. Mater. 23, 2879–2885 (2011)CrossRef
    5.Belaabed, B., Wojkiewicz, J.L., Lamouri, S., Kamchi, N.E., Lasri, T.: Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J. Alloy Compd. 527, 137–144 (2012)CrossRef
    6.Khafagy, R.M.: Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic Polyaniline/MgFe2O4. J. Alloy Compd. 509, 9849–9857 (2011)CrossRef
    7.Balint, R., Cassidy, N.J., Cartmell, S.H.: Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10, 2341–2353 (2014)CrossRef
    8.Gandhi, N., Singh, K., Ohlan, A., Singh, D.P., Dhawan, S.K.: Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 nanocomposites. Compos. Sci. Technol. 71, 1754–1760 (2011)CrossRef
    9.Salazar, J.S., Perez, L., Abril, O., Phuoc, L.T., Ihiawakrim, D., Vazquez, M., Greneche, J.-M., Begin-Colin, S., Pourroy, G.: Magnetic iron oxide nanoparticles in 10–40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 23, 1379–1386 (2011)CrossRef
    10.Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)
    11.Carneiro Leão, A.M.A., Oliveira, E.A., Carvalho Jr., L.B.: Immobilization for protein on ferromagnetic Dacron. Appl. Biochem. Biotech. 32, 53–58 (1991)CrossRef
    12.Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., Li, M.: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A 80A, 333–341 (2007)CrossRef
    13.Hong, R., Li, J., Wang, J., Li, H.: Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Part 5, 186–191 (2007)CrossRef
    14.Neri, D.F.M., Balcão, V.M., Dourado, F.O.Q., Oliveira, J.M.B., Carvalho Jr., L.B., Teixeira, J.A.: Immobilized β-galactosidase onto magnetic particles coated with polyaniline: support characterization and galactooligosaccharide production. J. Mol. Catal. B-Enzym. 70, 74–80 (2011)CrossRef
    15.Roth, H.-C., Schwaminger, S.P., Schindler, M., Wagner, F.E., Berensmeier, S.: Influencing factors in the co-precipitation process of superparamagnetic iron oxide nanoparticles: a model based study. J. Magn. Magn. Mater. 377, 81–89 (2015)CrossRef ADS
    16.Stejskal, J., Sapurina, I., Prokeš, J., Zemek, J.: In-situ polymerization polyaniline films. Synthetic Met. 105, 195–202 (1999)CrossRef
    17.Kohut-Svelko, N., Reynaud, S., Dedryevre, R., Martinez, H., Gonbeau, D., Francois, J.: Study of a nanocomposite based on a conducting polymer: polyaniline. Langmuir 21, 1575–1583 (2005)CrossRef
    18.Stejskal, J., Trchová, M., Fedorova, S., Sapurina, I., Zemek, J.: Surface polymerization of aniline on silica gel. Langmuir 19, 3013–3018 (2003)CrossRef
    19.Nagaraja, N., Pattar, J., Shashank, N., Manjanna, J., Kamada, Y., Rajanna, K., Mahesh, H.M.: Electrical, structural and magnetic properties of polyaniline/pTSA-TiO2 nanocomposites. Synthetic Met. 159, 718–722 (2009)CrossRef
    20.Xiao, Q., Tan, X., Ji, L., Xue, J.: Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route. Synthetic Met. 157, 784–791 (2007)CrossRef
    21.Lin, Y.-W., Wu, T.-M.: Synthesis characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos. Sci. Technol. 69, 2559–2565 (2009)CrossRef
    22.Feng, W., Bai, X.D., Lian, Y.Q., Liang, J., Wang, X.G., Yoshino, K.: Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41, 1551–1557 (2003)CrossRef
    23.Ma, M., Zhang, Y., Yu, W., Shen, H., Zhang, H., Gu, N.: Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A 212, 219–226 (2003)CrossRef
    24.Xu, X.Q., Shen, H., Xu, J.R., Li, X.J.: Aqueous-based magnetite magnetic fluids stabilized by surface small micelles of oleolysarcosine. Appl. Surf. Sci. 221, 430–436 (2004)CrossRef ADS
    25.Yamaura, M., Camilo, R.L., Sampaio, L.C., Macêdo, M.A., Nakamura, M., Toma, H.E.: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210–217 (2004)CrossRef ADS
    26.Klokkenburg, M., Hilhorst, J., Erné, B.H.: Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine. Vib. Spectrosc. 43, 243–248 (2007)CrossRef
    27.Andrade, A.L., Valente, M.A., Ferreira, J.M.F., Fabris, J.D.: Preparation of size-controlled nanoparticles of magnetite. J. Magn. Magn. Mater. 324, 1753–1757 (2012)CrossRef ADS
    28.Reddy, K.R., Lee, K.-P., Gopalan, A.I., Kang, H.-D.: Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React. Funct. Polym. 67, 943–954 (2007)CrossRef
    29.Yu, W., Zhang, T., Zhang, J., Qiao, X., Yang, L., Liu, Y.: The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998–3001 (2006)CrossRef
    30.Xu, F., Ma, L., Hu, Q., Gan, M., Tang, J.: Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. J. Magn. Magn. Mater. 374, 311–316 (2015)CrossRef ADS
    31.Vandenberghe, R.E., Barrero, C.A., da Costa, G.M., Van San, E., De Grave, E.: Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interact 126, 247–259 (2000)CrossRef ADS
    32.Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. Willey-Interscience, New York (1974)
    33.Quin, X.Y.: The exothermal and endothermal phenomena in nanocrystalline aluminum. Nanostruct. Mater. 2, 99–106 (1993)CrossRef
    34.Mørup, S., Frandsen, C., Hansen, M.F.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 48–54 (2010)CrossRef
    35.Jaramillo-Tabares, B.E., Isaza, F.J., Córdoba de Torresi, S.I.: Stabilization of polyaniline by the incorporation of magnetite nanoparticles. Mater. Chem. Phys. 132, 529–533 (2012)CrossRef
    36.Wen, X., Yang, J., He, B., Gu, Z.: Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr. Appl. Phys. 8, 535–541 (2008)CrossRef ADS
    37.Xu, H., Shao, M., Chen, T., Zhuo, S., Wen, C., Peng, M.: Magnetism-assisted assembled porous Fe3O4 nanoparticles and their electrochemistry for dopamine sensing. Micropor. Mesopor. Mat. 153, 35–40 (2012)CrossRef
    38.Cullity, D.: Introduction to Magnetic Materials. Addison-Wesley, Reading, MA (1972)
    39.Xu, L., Du, J., Li, P., Qian, Y.: In situ synthesis, magnetic property, and formation mechanism of Fe3O4 particles encapsulated in ID bamboo-shaped carbon microtubes. J. Phys. Chem. B 110, 3871–3875 (2006)CrossRef
    40.Grigorova, M., Blythe, H.J., Blaskov, V., Rusanov, V., Petkov, V., Masheva, V., Nihtianova, D., Martinez, L.M., Muñoz, J.S., Mikhov, M.: Magnetic properties and Mössbauer spectra of nanosized CoFe3O4 powders. J. Magn. Magn. Mater. 183, 163–172 (1998)CrossRef ADS
    41.Caramori, S.S., Fernandes, K.F.: The use of poly(ethylene terephthalate)-poly(aniline) composite for trypsin immobilization. Mater. Sci. Eng. C 28, 1159–1163 (2008)CrossRef
    42.Purcena, L.L.A., Caramori, S.S., Mitidieri, S., Fernandes, K.F.: The immobilization of trypsin onto polyaniline for protein digestion. Mater. Sci. Eng. C 29, 1077–1081 (2009)CrossRef
    43.Caramori, S.S., Faria, F.N., Viana, M.P., Fernandes, F.K., Carvalho, Jr, L.B.: Trypsin immobilization on discs of polyvinyl alcohol glutaraldehyde/polyaniline composite. Mater. Sci. Eng. C 31, 252–257 (2011)CrossRef
    44.Sun, J., Hu, K., Liu, Y., Pan, Y.: Novel superparamagnetic nanoparticles for trypsin immobilization and the application for efficient proteolysis. J. Chromatography B 942–943, 9–14 (2013)CrossRef
    45.Chellapandian, M.: Preparation and characterization of alkaline protease immobilized on vermiculate. Process Biochem. 33, 169–173 (1998)CrossRef
  • 作者单位:J. C. Maciel (1)
    A. A. D. Mercês (2)
    M. Cabrera (2)
    W. T. Shigeyosi (3)
    S. D. de Souza (4)
    M. Olzon-Dionysio (4)
    J. D. Fabris (4)
    C. A. Cardoso (3)
    D. F. M. Neri (5)
    M. P. C. Silva (2)
    L. B. Carvalho Jr. (2)

    1. Universidade Federal de Roraima, Campus Paricarana, 69301–000, Boa Vista, Roraima, Brazil
    2. Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
    3. Departamento de Física, Universidade Federal de São Carlos, São Carlos, SP, Brazil
    4. Universidade Federal dos Vales de Jequitinhonha e Mucuri, Diamantina, MG, Brazil
    5. Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Nuclear Physics, Heavy Ions and Hadrons
    Atoms, Molecules, Clusters and Plasmas
    Condensed Matter
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1572-9540
文摘
It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ∼15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite (γFe2O3). The coated magnetic nanoparticles (sample labeled “mPANI”) presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample “mPANIG-Trypsin”). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700