Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation
详细信息    查看全文
  • 作者:Miguel C Teixeira (1)
    Cláudia P Godinho (1)
    Tania R Cabrito (1)
    Nuno P Mira (1)
    Isabel Sá-Correia (1)
  • 关键词:Saccharomyces cerevisiae ; Ethanol tolerance ; ABC multidrug transporters ; Membrane permeabilization ; Bio ; ethanol production
  • 刊名:Microbial Cell Factories
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:11
  • 期:1
  • 全文大小:287KB
  • 参考文献:1. Schubert C: <strong class="a-plus-plus">Can biofuels finally take center stage?strong> / Nat Biotechnol 2006,<strong class="a-plus-plus">24strong>(7)<strong class="a-plus-plus">:strong>777-84. ss="external" href="http://dx.doi.org/10.1038/nbt0706-777">CrossRef
    2. Van Uden N: <strong class="a-plus-plus">Ethanol toxicity and ethanol tolerance in yeasts.strong> / Ann Rep Ferm Process 1985, <strong class="a-plus-plus">8:strong>11-8.
    3. Mira NP, Teixeira MC, Sá-Correia I: <strong class="a-plus-plus">Adaptive response and tolerance to weak acids inSaccharomyces cerevisiae: a genome-wide view.strong> / OMICS 2010,<strong class="a-plus-plus">14strong>(5)<strong class="a-plus-plus">:strong>525-40. ss="external" href="http://dx.doi.org/10.1089/omi.2010.0072">CrossRef
    4. Teixeira MC, Mira NP, Sá-Correia I: <strong class="a-plus-plus">A genome-wide perspective on the response and tolerance to food-relevant stresses inSaccharomyces cerevisiae.strong> / Curr Opin Biotechnol 2011, <strong class="a-plus-plus">22:strong>150-56. ss="external" href="http://dx.doi.org/10.1016/j.copbio.2010.10.011">CrossRef
    5. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA: <strong class="a-plus-plus">Yeast responses to stresses associated with industrial brewery handling.strong> / FEMS Microbiol Rev 2007,<strong class="a-plus-plus">31strong>(5)<strong class="a-plus-plus">:strong>535-69. ss="external" href="http://dx.doi.org/10.1111/j.1574-6976.2007.00076.x">CrossRef
    6. Rosa MF, Sá-Correia I: <strong class="a-plus-plus">In vivo activation by ethanol of plasma membrane ATPase ofSaccharomyces cerevisiae.strong> / Appl Environ Microbiol 1991,<strong class="a-plus-plus">57strong>(3)<strong class="a-plus-plus">:strong>830-35.
    7. Rosa MF, Sá-Correia I: <strong class="a-plus-plus">Intracellular acidification does not account for inhibition ofSaccharomyces cerevisiaegrowth in the presence of ethanol.strong> / FEMS Microbiol Lett 1996,<strong class="a-plus-plus">135strong>(2-)<strong class="a-plus-plus">:strong>271-74. ss="external" href="http://dx.doi.org/10.1111/j.1574-6968.1996.tb08000.x">CrossRef
    8. Salgueiro SP, Sá-Correia I, Novais JM: <strong class="a-plus-plus">Ethanol-Induced Leakage inSaccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity.strong> / Appl Environ Microbiol 1988,<strong class="a-plus-plus">54strong>(4)<strong class="a-plus-plus">:strong>903-09.
    9. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B: <strong class="a-plus-plus">Global gene expression during short-term ethanol stress inSaccharomyces cerevisiae.strong> / FEBS Lett 2001,<strong class="a-plus-plus">498strong>(1)<strong class="a-plus-plus">:strong>98-03. ss="external" href="http://dx.doi.org/10.1016/S0014-5793(01)02503-0">CrossRef
    10. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H: <strong class="a-plus-plus">The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols.strong> / FEMS Yeast Res 2006,<strong class="a-plus-plus">6strong>(5)<strong class="a-plus-plus">:strong>744-50. ss="external" href="http://dx.doi.org/10.1111/j.1567-1364.2006.00040.x">CrossRef
    11. Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Iefuji H, Hirata D: <strong class="a-plus-plus">Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol.strong> / Biosci Biotechnol Biochem 2004,<strong class="a-plus-plus">68strong>(4)<strong class="a-plus-plus">:strong>968-72. ss="external" href="http://dx.doi.org/10.1271/bbb.68.968">CrossRef
    12. van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A: <strong class="a-plus-plus">Genome-wide identification of genes required for growth ofSaccharomyces cerevisiaeunder ethanol stress.strong> / Yeast 2006,<strong class="a-plus-plus">23strong>(5)<strong class="a-plus-plus">:strong>351-59. ss="external" href="http://dx.doi.org/10.1002/yea.1359">CrossRef
    13. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S: <strong class="a-plus-plus">Identification of target genes conferring ethanol stress tolerance toSaccharomyces cerevisiaebased on DNA microarray data analysis.strong> / J Biotechnol 2007,<strong class="a-plus-plus">131strong>(1)<strong class="a-plus-plus">:strong>34-4. ss="external" href="http://dx.doi.org/10.1016/j.jbiotec.2007.05.010">CrossRef
    14. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H: <strong class="a-plus-plus">Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress inSaccharomyces cerevisiae.strong> / FEMS Yeast Res 2009,<strong class="a-plus-plus">9strong>(1)<strong class="a-plus-plus">:strong>32-4. ss="external" href="http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x">CrossRef
    15. Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sá-Correia I: <strong class="a-plus-plus">Genome-wide identification ofSaccharomyces cerevisiaegenes required for maximal tolerance to ethanol.strong> / Appl Environ Microbiol 2009,<strong class="a-plus-plus">75strong>(18)<strong class="a-plus-plus">:strong>5761-772. ss="external" href="http://dx.doi.org/10.1128/AEM.00845-09">CrossRef
    16. Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamas MJ: <strong class="a-plus-plus">The glycerol channel Fps1p mediates the uptake of arsenite and antimonite inSaccharomyces cerevisiae.strong> / Mol Microbiol 2001,<strong class="a-plus-plus">40strong>(6)<strong class="a-plus-plus">:strong>1391-401. ss="external" href="http://dx.doi.org/10.1046/j.1365-2958.2001.02485.x">CrossRef
    17. Hohmann S: <strong class="a-plus-plus">Osmotic stress signaling and osmoadaptation in yeasts.strong> / Microbiol Mol Biol Rev 2002,<strong class="a-plus-plus">66strong>(2)<strong class="a-plus-plus">:strong>300-72. ss="external" href="http://dx.doi.org/10.1128/MMBR.66.2.300-372.2002">CrossRef
    18. Mollapour M, Piper PW: <strong class="a-plus-plus">Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid.strong> / Mol Cell Biol 2007,<strong class="a-plus-plus">27strong>(18)<strong class="a-plus-plus">:strong>6446-456. ss="external" href="http://dx.doi.org/10.1128/MCB.02205-06">CrossRef
    19. Nozawa A, Takano J, Kobayashi M, von Wiren N, Fujiwara T: <strong class="a-plus-plus">Roles ofBOR1,DUR3, andFPS1in boron transport and tolerance inSaccharomyces cerevisiae.strong> / FEMS Microbiol Lett 2006,<strong class="a-plus-plus">262strong>(2)<strong class="a-plus-plus">:strong>216-22. ss="external" href="http://dx.doi.org/10.1111/j.1574-6968.2006.00395.x">CrossRef
    20. Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S: <strong class="a-plus-plus">Aquaporins in yeasts and filamentous fungi.strong> / Biol Cell 2005,<strong class="a-plus-plus">97strong>(7)<strong class="a-plus-plus">:strong>487-00. ss="external" href="http://dx.doi.org/10.1042/BC20040144">CrossRef
    21. Támas MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, / et al.: <strong class="a-plus-plus">Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation.strong> / Mol Microbiol 1999,<strong class="a-plus-plus">31strong>(4)<strong class="a-plus-plus">:strong>1087-104. ss="external" href="http://dx.doi.org/10.1046/j.1365-2958.1999.01248.x">CrossRef
    22. Toh TH, Kayingo G, van der Merwe MJ, Kilian SG, Hallsworth JE, Hohmann S, Prior BA: <strong class="a-plus-plus">Implications ofFPS1deletion and membrane ergosterol content for glycerol efflux fromSaccharomyces cerevisiae.strong> / FEMS Yeast Res 2001,<strong class="a-plus-plus">1strong>(3)<strong class="a-plus-plus">:strong>205-11.
    23. Jungwirth H, Kuchler K: <strong class="a-plus-plus">Yeast ABC transporters-a tale of sex, stress, drugs and aging.strong> / FEBS Lett 2006,<strong class="a-plus-plus">580strong>(4)<strong class="a-plus-plus">:strong>1131-138. ss="external" href="http://dx.doi.org/10.1016/j.febslet.2005.12.050">CrossRef
    24. Sá-Correia I, Santos S, Teixeira M, Cabrito T, Mira N: <strong class="a-plus-plus">Drug:H+antiporters in chemical stress response in yeast.strong> / Trends Microbiol 2009, <strong class="a-plus-plus">17:strong>22-1. ss="external" href="http://dx.doi.org/10.1016/j.tim.2008.09.007">CrossRef
    25. Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S: <strong class="a-plus-plus">ABC transporters inSaccharomyces cerevisiaeand their interactors: new technology advances the biology of the ABCC (MRP) subfamily.strong> / Microbiol Mol Biol Rev 2009,<strong class="a-plus-plus">73strong>(4)<strong class="a-plus-plus">:strong>577-93. ss="external" href="http://dx.doi.org/10.1128/MMBR.00020-09">CrossRef
    26. Cabrito TR, Teixeira MC, Singh A, Prasad R, Sá-Correia I: <strong class="a-plus-plus">The yeast ABC transporter Pdr18 (ORFYNR070w) controls plasma membrane sterol composition, playing a role in multidrug resistance.strong> / Biochem J 2011, <strong class="a-plus-plus">440:strong>195-02. ss="external" href="http://dx.doi.org/10.1042/BJ20110876">CrossRef
    27. Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, / et al.: <strong class="a-plus-plus">The chemical genomic portrait of yeast: uncovering a phenotype for all genes.strong> / Science 2008,<strong class="a-plus-plus">320strong>(5874)<strong class="a-plus-plus">:strong>362-65. ss="external" href="http://dx.doi.org/10.1126/science.1150021">CrossRef
    28. Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ: <strong class="a-plus-plus">Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response.strong> / FEMS Yeast Res 2008,<strong class="a-plus-plus">8strong>(1)<strong class="a-plus-plus">:strong>35-2. ss="external" href="http://dx.doi.org/10.1111/j.1567-1364.2007.00338.x">CrossRef
    29. Pereira FB, Guimaraes PM, Gomes DG, Mira NP, Teixeira MC, Sá-Correia I, Domingues L: <strong class="a-plus-plus">Identification of candidate genes for yeast engineering to improve bioethanol production in Very-High-Gravity and lignocellulosic biomass industrial fermentations.strong> / Biotechnol Biofuels 2011,<strong class="a-plus-plus">4strong>(1)<strong class="a-plus-plus">:strong>57. ss="external" href="http://dx.doi.org/10.1186/1754-6834-4-57">CrossRef
    30. D'Amore T, Panchal CJ, Stewart GG: <strong class="a-plus-plus">Intracellular ethanol accumulation inSaccharomyces cerevisiaeduring fermentation.strong> / Appl Environ Microbiol 1988,<strong class="a-plus-plus">54strong>(1)<strong class="a-plus-plus">:strong>110-14.
    31. Dupont S, Beney L, Ferreira T, Gervais P: <strong class="a-plus-plus">Nature of sterols affects plasma membrane behavior and yeast survival during dehydration.strong> / Biochim Biophys Acta 2011,<strong class="a-plus-plus">1808strong>(6)<strong class="a-plus-plus">:strong>1520-528. ss="external" href="http://dx.doi.org/10.1016/j.bbamem.2010.11.012">CrossRef
    32. Vanegas JM, Contreras MF, Faller R, Longo ML: <strong class="a-plus-plus">Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes.strong> / Biophys J 2012,<strong class="a-plus-plus">102strong>(3)<strong class="a-plus-plus">:strong>507-16. ss="external" href="http://dx.doi.org/10.1016/j.bpj.2011.12.038">CrossRef
    33. Garcia-Gonzalez L, Geeraerd AH, Mast J, Briers Y, Elst K, Van Ginneken L, Van Impe JF, Devlieghere F: <strong class="a-plus-plus">Membrane permeabilization and cellular death ofEscherichia coli,Listeria monocytogenesandSaccharomyces cerevisiaeas induced by high pressure carbon dioxide treatment.strong> / Food Microbiol 2010,<strong class="a-plus-plus">27strong>(4)<strong class="a-plus-plus">:strong>541-49. ss="external" href="http://dx.doi.org/10.1016/j.fm.2009.12.004">CrossRef
  • 作者单位:Miguel C Teixeira (1)
    Cláudia P Godinho (1)
    Tania R Cabrito (1)
    Nuno P Mira (1)
    Isabel Sá-Correia (1)

    1. IBB -Institute for Biotechnology and BioEngineering, Centro de Engenharia Biológica e Química, and Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
  • ISSN:1475-2859
文摘
Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3?H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6- higher ethanol concentration and a 17- higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700