Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event (GOE)
详细信息    查看全文
  • 作者:ChangLe Wang ; LianChang Zhang ; CaiYun Lan ; YanPei Dai
  • 关键词:Yuanjiacun iron deposit ; geochemistry of BIFs ; Great Oxidation Event (GOE) ; Mn hydroxide shuttle ; precipitation mechanism
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:57
  • 期:10
  • 页码:2469-2485
  • 全文大小:2,214 KB
  • 参考文献:1. Alexander B W, Bau M, Andersson P, et al. 2008. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta, 72: 378-94
    2. Bau M, Dulski P. 1992. Small-scale variations of the rare earth element distribution in Precambrian iron formations. Eur J Mineral, 4: 1429-433
    3. Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 79: 37-5
    4. Bau M, Dulski P. 1999. Comparing yttrium and rare-earth in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol, 155: 77-0
    5. Bau M, M?ller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar Chem, 56: 123-31
    6. Bau M. 1993. Effects of syn- and post-depositional processes on the rare earth element distribution in Precambrian iron-formations. Eur J Mineral, 5: 257-67
    7. Bau M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating Fe oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta, 63: 67-7
    8. Bau M. 1991. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol, 93: 219-30
    9. Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-20
    10. Bekker A, Slack J F, Planavsky N, et al. 2010. Iron Formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467-08
    11. Beukes N J, Klein C. 1990. Geochemistry and sedimentology of a facies transition-from microbanded to granular iron-formation-in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res, 47: 99-39
    12. Bilal B A. 1991. Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Z Naturforsch, 46: 1108-116
    13. Bolhar R, Kamber B S, Moorbath S, et al. 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett, 222: 43-0
    14. Bolhar R, Van Kranendonk M J. 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res, 155: 229-50
    15. Bostrom K. 1973. The origin and fate of ferromanganoan active ridge sediments. Stock Contribut Geol, 27: 149-43
    16. Byrne R, Sholkovitz E. 1996. Marine chemistry and geochemistry of the lanthanides. Handbook Phys Chem Rare Earths, 23: 497-93
    17. Chandler F W. 1980. Proterozoic redbed sequences of Canada. Can Geol Surv Bull, 311: 35-9
    18. Cloud P E. 1965. Significance of Gunflint (Precambrian) microflora-photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-5
    19. Condie K C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol, 104: 1-7
    20. Dasgupta H, Sambasiva Rao V, Krishna C. 1999. Chemical environments of deposition of ancient iron-and manganese-rich sediments and cherts. Sediment Geol, 125: 83-8
    21. De Carlo E H, Green W J. 2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta, 66: 1323-333
    22. Dymek R F, Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt West Greenland. Precambrian Res, 39: 247-02
    23. Geng Y S, Wan Y S, Shen Q H, et al. 2000. Chronological framework of the early precambrian important events in the Lüliang area, Shanxi Province (in Chinese). Acta Geo Sin, 74: 216-23
    24. Geng Y S, Wan Y S, Yang C H. 2008. The Set of Main Geological Events in the Paleoproterozoic Lüliang Area, Shanxi Province (in Chinese). Beijing: Geological Publishing House. 515-33
    25. Geng Y S, Yang C H, Song B, et al. 2004. Post-orogenic granites with an age of 1800Ma in Lüliang area, North China Craton: Constraints from isotopic geochronology and geochemistry (in Chinese). Geol J China Uni, 10: 477-87
    26. German C R, Elderfield H. 1990. Application of the Ce-anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-33
    27. González P D, Sato A M, Llambías E J, et al. 2009. Petrology and geochemistry of the banded iron formation in the Eastern Sierras Pampeanas of San Luis (Argentina): Implications for the evolution of the Nogolí Metamorphic Complex. J S Am Earth Sci, 28: 89-12
    28. Grauch R I. 1989. Rare earth elements in metamorphic rocks. Mineral Soc Am, 21: 147-67
    29. Gross G A. 1980. A classification of iron formations based on depositional environments. Can Mineral, 18: 215-22
    30. Gross G A. 1996. Algoma-type previous term iron-formation. Ottawa: British Columbia Ministry of Employment and Investment Open File. 25-8
    31. Guo J H, O’Brien P J, Zhai M G. 2002. High-pressure granulites in the Sangan area, North China Craton: Metamorphic evolution, / P- / T paths and geotectonic significance. J Metamorph Geol, 20: 741-56
    32. Guo J H, Sun M, Zhai M G. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24: 629-42
    33. Hamade T, Konhauser K, Raiswell R, et al. 2003. Using Ge/Si ratio to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, 31: 35-8
    34. Hannah J L, Bekker A, Stein H J, et al. 2004. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett, 225: 43-2
    35. Hatton O, Davidson G. 2004. Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Aust J Earth Sci, 51: 85-06
    36. Henderson P. 1984. General Geochemical Properties and Abundances of the Rare Earth Elements. Amsterdam: Elsevier. 1-2
    37. Holland H D. 1984. The Chemical Evolution of the Atmosphere and the Oceans. Princeton: Princeton University Press. 1-82
    38. Hou Y S, Zhao G J, Yang Y Q, et al. 2006. Paleo-rift evolution of Lüliang Mountain and ore-forming constraint (in Chinese). J Jilin Univ (Earth Sci Edi), 36: 15-8
    39. Huston D L, Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett, 220: 41-5
    40. Isley A E, Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res, 104: 15461-5477
    41. Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol, 103: 169-85
    42. James H L. 1954. Sedimentary facies of iron-formation. Econ Geol, 49: 235-93
    43. Kato Y, Ohta I, Tsunematsu T, et al. 1998. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and plate tectonics. Geochim Cosmochim Acta, 62: 3475-497
    44. Kholodov V N, Butuzova G Y. 2001. Problems of iron and phosphorus geochemistry in the Precambrian. Litho Miner Resour, 36: 291-02
    45. Klein C, Beukes N J. 1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol, 84: 1733-774
    46. Klein C, Beukes N J. 1992. Time Distribution, Stratigraphy, Sedimentologic Setting, and Geochemistry of Precambrian Iron-formations. Cambridge: Cambridge University Press. 139-46
    47. Klein C. 1973. Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Econ Geol, 68: 1075-088
    48. Koeppenkastrop D, De Carlo E H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles-an experimental approach. Chem Geol, 95: 251-63
    49. Konhauser K O, Amskold L, Lalonde S V, et al. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett, 258: 87-00
    50. Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the Precambrian banded Fe formations? Geology, 30: 1079-082
    51. Konhauser K O, Pecoits E, Lalonde S V, et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750-53
    52. Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 22: 383-97
    53. Li Y H, Hou K J, Wan D F, et al. 2010. Formation mechanism of precambrian banded iron formation and atmosphere and ocean during early stage of the Earth (in Chinese). Acta Geol Sin, 80: 1359-373
    54. Li Y H, Zhang Z J, Wu J S, et al. 2011. Metamorphic chronology of the BIF in Malanzhuang of eastern Hebei Province and its geological implications (in Chinese). Miner Deposita, 30: 645-53
    55. Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-10
    56. Li Y L. 2012. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in Early Precambrian Oceans. Astrobiology, 12: 1100-108
    57. Li Z H, Zhu X K, Tang S H, et al. 2010. Characteristics of rare earth elements and geological significations of BIFs from Jidong, Wutai and Lüliang Area (in Chinese). Geoscience, 24: 840-46
    58. Li Z H, Zhu X K, Tang S H. 2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source (in Chinese). Acta Petrol ET Minera, 27: 285-90
    59. Liu C H, Zhao G C, Sun M, et al. 2011. U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton. Sediment Geol, 236: 129-40
    60. Liu J Z, Zhang F Q, Ouyang Z Y, et al. 2003. Geochemistry and chronology of the Jiehekou Group metamorphic basic volcanic rocks in the Lüliang Mountain area, Shanxi, China. Sci China Ser D-Earth Sci, 46: 1171-181
    61. Liu S W, Li Q G, Zhang L F. 2009. Geology, Geochemistry of metamorphic volcanic rock suit in Precambrian Yejishan Group, Lüliang mountains and its tectonic implications (in Chinese). Acta Petr Sin, 25: 547-60
    62. Liu S W, Zhang J, Li Q G, et al. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Res, 222: 173-90
    63. Lu B Q, Wang C Y. 2003. The Study on the Designation of the Metamorphic Belts and Their Genesis in Lüliang Groups in Loufan Districts Shanxi Province (in Chinese). Acta Geol Sin, 24: 325-29
    64. Manikyamba C, Balaram V, Naqvi S M. 1993. Geochemical signatures of polygenetic origin of a banded-iron formation (BIF) of the Archean Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precambrian Res, 61: 137-64
    65. Manikyamba C, Naqvi S. 1995. Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India-mixing of clastic and chemical processes at a shallow shelf. Precambrian Res, 72: 69-5
    66. McLennan S B. 1989. Rare Earth Elements in Sedimentary Rocks Influence of Provenance and Sedimentary Processes. Washington: Society of America. 169-00
    67. MacRae N D, Nesbitt H W, Kronberg B I. 1992. Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett, 109: 585-91
    68. Morris R C. 1993. Genetic moelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Res, 60: 243-86
    69. Murray R, Brink M, Gerlach D, et al. 1991. Rare earth, major and trace elements in chert from the Franciscan complex and Monterey Group, California: Assessing REE sources to fine grained marine sediments. Geochim Cosmochim Acta, 55: 1875-895
    70. Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett, 148: 329-40
    71. Pecoits E, Gingras M K, Barley M E, et al. 2009. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Res, 172: 163-87
    72. Pichler T, Veizer J, Hall G E M. 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem, 64: 229-52
    73. Planavsky N, Bekker A, Rouxel O J, et al. 2010. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta, 74: 6387-405
    74. Shen B F, Song L S, Li H Z. 1982. An analysis of the sedimentary facies and the formation condition of the Yuanjiacun iron formation Lanxian County Shanxi Province, China (in Chinese). J Changchun Geol Ins, 25: 31-1
    75. Shen B F, Zhai A M, Yang C L. 2010. Paleoproterozoic-An Important Metallogenic Epoch in China (in Chinese). Geol Sur Res, 33: 241-56
    76. Shen Q H, Song H X, Zhao Z R. 2009. Characteristics of rare earth elements and trace elements in Hanwang Neo-Archaean banded iron formations, Shandong Province (in Chinese). Acta Geo Sin, 30: 693-99
    77. Shen Q H. 1998. The Geological Characteristics and Forming Geological Background of the Early Precambrian Banded Itabirite in North China Platform (in Chinese). Beijing: Geological Publishing House. 1-0
    78. Shimizu H, Umemotto N, Masuda A, et al. 1990. Sources of ironformations in the Archean Isua and Malene supracrustals West Greenland: evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim Cosmochim Acta, 54: 1147-154
    79. Sholkovitz E R, Shaw T, Schneider D L. 1992. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim Cosmochim Acta, 56: 3389-402
    80. Spier C A, de Oliveira S M B, Sial A N, et al. 2007. Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferr?fero, Minas Gerais, Brazil. Precambrian Res, 152: 170-06
    81. Taylor D, Dalstra H J, Harding A E, et al. 2001. Genesis of the high-grade hematite orebodies of the Hamerley Province Western Australia. Econ Geol, 96: 837-73
    82. Tian Y Q, Yuan G P, Lu J R, et al. 1986. Research on formation conditions and tectonic characteristics of Precambrian Yuanjiacun metamorphic-sedimentary iron deposits in Lan County, Shanxi Province (in Chinese). Shanxi Geology and Mineral Resources Bureau. 1-70
    83. Trendall A F. 1983. Iron-Formation: Facts and Problems. Amsterdam: Elsevier. 1-1
    84. Wan Y S, Geng Y S, Shen Q H, et al. 2000. Khondalite series-geochrology and geochemistry of the Jiehekou Group in Lüliang area, Shanxi Province (in Chinese). Acta Petrol Sin, 16: 49-8
    85. Wan Y S, Song B, Liu D Y, et al. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res, 149: 249-71
    86. Wang C L, Zhang L C, Liu L, et al. 2011. The formation era of BIF and its research methods (in Chinese). Acta Minal Sin, 31: 480-82
    87. Wang C L, Zhang L C, Liu L, et al. 2012. Research progress of Precambrian iron formations abroad and some problems deserving further discussion (in Chinese). Miner Deposita, 31: 1311-325
    88. Wheat C G, Mottl M J, Rudnicki M. 2002. Trace element and REE composition of a low-Temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta, 66: 3693-705
    89. Wonder J, Spry P, Windom K. 1988. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia. Econ Geol, 83: 1070-081
    90. Wu J S, Geng Y S, Shen Q H, et al. 1998. Archean Geology Characteristics and Tectonic Evolution of China-Koren Paleocontinent (in Chinese). Bejing: Geological Publishing House. 192-11
    91. Xia X P, Sun M, Zhao G C, et al. 2009. U-Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geol Mag, 146: 701-16
    92. Yao P H. 1993. Records of Chinas Iron Ore Deposits (in Chinese). Beijing: Metallurgical Industry Press. 1-62
    93. Yu J H, Wang D Z, Wang C Y. 1997a. Ages of the Lüliang group and its main metamorphism in the Lüliang mountains, Shanxi-Evidence from single-grain zircon U-Pb ages (in Chinese). Geol Rev, 43: 403-08
    94. Yu J H, Wang D Z, Wang C Y. 1997b. Geochemical characteristics and petrogenesis of the Early Proterozoic bimodal volcanic rocks from Lüliang Group, Shanxi Province (in Chinese). Acta Petrol Sin, 13: 59-0
    95. Zahnle K J, Claire M W, Catling D C. 2006. The loss of mass-independent fractionation of sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology, 4: 271-83
    96. Zhai M G, Santosh M. 2011. The early Precambrian odyssey of North China Craton: A synoptic overview. Gondwana Res, 20: 6-5
    97. Zhai M G. 2004. 2.1-1.7 Ga geological event group and its geotectonic significance (in Chinese). Acta Petrol Sin, 20: 1341-354
    98. Zhai M G. 2011. Cratonization and the Ancient North China Continent: A summary and review. Sci China Earth Sci, 54: 1110-120
    99. Zhang L C, Zhai M G, Zhang X J, et al. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS Zircon U-Pb dating. Precambrian Res, 222: 325-38
    100. Zhang X J, Zhang L C, Xiang P, et al. 2011. Zircon U-Pb age, Hf isotopes and geochemistry for Shuichang banded iron formation, North China: Constraints on the ore-forming age, materials and tectonic setting. Gondwana Res, 20: 137-48
    101. Zhao G C, Cawood P A, Wilde S A, et al. 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 103: 55-8
    102. Zhao G C, Cawood P A, Wilde S A, et al. 2001b. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 42: 1141-170
    103. Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177-02
    104. Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706-21
    105. Zhao G C, Wilde S A, Cawood P A, et al. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37-3
    106. Zhao G C, Wilde S A, Cawood P A, et al. 2001a. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45-3
    107. Zhao G C, Wilde S A, Sun M, et al. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res, 160: 213-26
    108. Zhao Z H. 2010. Banded iron formation and related great oxidation event. Earth Sci Front, 17: 1-2
    109. Zhu J C, Zhang F S. 1987. The formation condition of the Precambrian iron ores in Yuanjiacun ore deposit, Shanxi Province (in Chinese). Miner Deposita, 6: 11-1
  • 作者单位:ChangLe Wang (1) (2)
    LianChang Zhang (1)
    CaiYun Lan (2) (3)
    YanPei Dai (1) (2)

    1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
    3. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
  • ISSN:1869-1897
文摘
In China, most Precambrian banded iron formations (BIFs) are situated in the North China Craton. The Yuanjiacun iron deposit, located in the Lüliang area, is arguably the most representative Superior-type BIF. This iron deposit is coherent with the sedimentary rock succession of the Yuanjiacun Formation in the lower Lüliang Group, and was interpreted to be deposited at 2.3-2.1 Ga, based on ages of overlying and underlying volcanic strata. This age overlaps with the time range of the Great Oxidation Event (GOE, 2.4-2.2 Ga). The Yuanjiacun BIF consists mainly of subhedral-xenomorphic magnetite and quartz and rarely other minerals with a lower degree of metamorphism, from greenschist to lower amphibolite facies. The geochemical characteristics of this BIF are similar to those of Superior-type BIFs. Prominent positive La, Y, and Eu anomalies normalized by the Post Archean Australian Shale (PAAS) indicate that the primary chemical precipitate is a result of solutions that represent mixtures of seawater and high-T hydrothermal fluids. The contamination from crustal detritus found is negligible based on low abundances of Al2O3 and TiO2 (2O3 and TiO2. In particular, the Yuanjiacun BIF samples do not display significant negative Ce anomalies like those of the Archean iron formations, but rather, the Yuanjiacun BIF samples exhibit prominent positive Ce anomalies, low Y/Ho ratios, and high light to heavy REE ((Pr/Yb)SN) ratios, which are essentially consistent with the late Paleoproterozoic (

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700