Comparison of two exploratory data analysis methods for classification of Phyllanthus chemical fingerprint: unsupervised vs. supervised pattern recognition technologies
详细信息    查看全文
  • 作者:Jianru Guo (1)
    QianQian Chen (1)
    Caiyun Wang (1)
    Hongcong Qiu (2)
    Buming Liu (2)
    Zhi-Hong Jiang (1)
    Wei Zhang (1)

    1. State Key Laboratory of Quality Research in Chinese Medicines
    ; Macau Institute for Applied Research in Medicine and Health ; Macau University of Science and Technology ; Taipa ; Macau ; China
    2. Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards
    ; Guangxi Institute of Traditional Medical and Pharmaceutical Sciences ; Nanning ; 530022 ; China
  • 关键词:Phyllanthus ; Unsupervised ; Supervised ; Pattern recognition ; High ; performance liquid chromatography time ; of ; flight mass spectrometry
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:407
  • 期:5
  • 页码:1389-1401
  • 全文大小:2,109 KB
  • 参考文献:1. Lao L, Xu L, Xu S (2012) Integrative pediatric oncology. Springer, Berlin, p 125 CrossRef
    2. Liang YZ, Xie PS, Chan K (2004) Quality control of herbal medicines. J Chromatogr B 812:53鈥?0 CrossRef
    3. Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M (2006) Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 11:128鈥?50
    4. Liu L, Heinrich M, Myers S, Dworjanyn SA (2012) Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 142:591鈥?19 CrossRef
    5. Tistaert C, Dejaegher B, Vander Heyden Y (2011) Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta 690:148鈥?61 CrossRef
    6. Xie PS, Chen S, Liang YZ, Wang X, Tian R (2006) Chromatographic fingerprint analysis鈥揳 rational approach for quality assessment of traditional Chinese herbal medicine. J Chromatogr A 1112:171鈥?80 CrossRef
    7. Jiang Y, David B, Tu P, Barbin Y (2010) Recent analytical approaches in quality control of traditional Chinese medicines鈥揳 review. Anal Chim Acta 657:9鈥?8 CrossRef
    8. Wei SY, Yao WX, Ji WY, Wei JQ, Peng SQ (2013) Qualitative and quantitative analysis of anthraquinones in rhubarbs by high performance liquid chromatography with diode array detector and mass spectrometry. Food Chem 141:1710鈥?715 CrossRef
    9. Jing J, Parekh HS, Wei M, Ren WC, Chen SB (2013) Advances in analytical technologies to evaluate the quality of traditional Chinese medicines. Trends Anal Chem 44:39鈥?5 CrossRef
    10. Feng X, Kong W, Wei J, Ou-Yang Z, Yang M (2014) HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger. Pharm Biol 52:362鈥?67 CrossRef
    11. Zhai HL, Li BQ, Tian YL, Li PZ, Zhang XY (2014) An application of wavelet moments to the similarity analysis of three-dimensional fingerprint spectra obtained by high-performance liquid chromatography coupled with diode array detector. Food Chem 145:625鈥?31 CrossRef
    12. Alaerts G, Van Erps J, Pieters S, Dumarey M, van Nederkassel AM, Goodarzi M, Smeyers-Verbeke J, Vander Heyden Y (2012) Similarity analyses of chromatographic fingerprints as tools for identification and quality control of green tea. J Chromatogr B 910:61鈥?0 CrossRef
    13. Han T, Hu Y, Zhou SY, Li HL, Zhang QY, Zhang H, Huang BK, Rahman K, Zheng HC, Qin LP (2008) Correlation between the genetic diversity and variation of total phenolic acids contents in Fructus Xanthii from different populations in China. Biomed Chromatogr 22:478鈥?86 CrossRef
    14. Luo G, Wang Y, Liang Q, Liu Q (2012) Systems biology for traditional chinese medicine. Wiley, Hoboken, p 256 CrossRef
    15. Lu GH, Chan K, Liang YZ, Leung K, Chan CL, Jiang ZH, Zhao ZZ (2005) Development of high-performance liquid chromatographic fingerprints for distinguishing Chinese Angelica from related Umbelliferae herbs. J Chromatogr A 1073:383鈥?92 CrossRef
    16. Beiki AH, Saboor S, Ebrahimi M (2012) A new avenue for classification and prediction of olive cultivars using supervised and unsupervised algorithms. PLoS One 7:e44164 CrossRef
    17. Love BC (2002) Comparing supervised and unsupervised category learning. Psychon Bull Rev 9:829鈥?35 CrossRef
    18. Choi YH, Kim HK, Hazekamp A, Erkelens C, Lefeber AW, Verpoorte R (2004) Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. J Nat Prod 67:953鈥?57 CrossRef
    19. Mukherjee A, Lal R (2014) Comparison of soil quality index using three methods. PLoS One 9:e105981 CrossRef
    20. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433鈥?59 CrossRef
    21. Lu Y, Gao B, Chen P, Charles D, Yu LL (2014) Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis. Food Chem 154:262鈥?68 CrossRef
    22. Beauchaine TP, Beauchaine RJ 3rd (2002) A comparison of maximum covariance and K-means cluster analysis in classifying cases into known taxon groups. Psychol Methods 7:245鈥?61 CrossRef
    23. Chu KC (1974) Applications of artificial intelligence to chemistry. Use of pattern recognition and cluster analysis to determine the pharmacological activity of some organic compounds. Anal Chem 46:1181鈥?187 CrossRef
    24. Larose DT (2005) k-Nearest neighbor algorithm. In: Larose DT (ed) Discovering knowledge in data: an introduction to data mining. Wiley, Hoboken, pp 90鈥?06 CrossRef
    25. Berrueta LA, Alonso-Salces RM, H茅berger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158:196鈥?14 CrossRef
    26. Liland KH (2011) Multivariate methods in metabolomics 鈥?from pre-processing to dimension reduction and statistical analysis. Trends Anal Chem 30:827鈥?41 CrossRef
    27. Jolliffe I (2005) Principal component analysis. Wiley Online Library, p 478
    28. Picone G, Mezzetti B, Babini E, Capocasa F, Placucci G, Capozzi F (2011) Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera). J Agric Food Chem 59:9271鈥?279 CrossRef
    29. Mari A, Montoro P, Pizza C, Piacente S (2012) Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements. J Pharm Biomed Anal 70:224鈥?30 CrossRef
    30. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1鈥?7 CrossRef
    31. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439鈥?444 CrossRef
    32. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469鈥?79 CrossRef
    33. Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, Long I, Lundstedt T, Trygg J, Wold S (2004) Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Anal Bioanal Chem 380:419鈥?29 CrossRef
    34. Yegnanarayana B (2009) Artificial neural networks. PHI Learning, New Delhi, p 476
    35. Khan J, Wei JS, Ringn茅r M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673鈥?79 CrossRef
    36. Baxt WG (1995) Application of artificial neural networks to clinical medicine. Lancet 346:1135鈥?138 CrossRef
    37. Hussain AS, Johnson RD, Vacharajani NN, Ritschel WA (1993) Feasibility of developing an NN for prediction of human pharmacokinetic parameters from animal data. Pharm Res 10:466鈥?69 CrossRef
    38. Patel JR, Tripathi P, Sharma V, Chauhan NS, Dixit VK (2011) Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol 138:286鈥?13 CrossRef
    39. Calixto JB, Santos AR, Cechinel Filho V, Yunes RA (1998) A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential. Med Res Rev 18:225鈥?58 CrossRef
    40. Ogata T, Higuchi H, Mochida S, Matsumoto H, Kato A, Endo T, Kaji A, Kaji H (1992) HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res Hum Retrovir 8:1937鈥?944 CrossRef
    41. Venkateswaran PS, Millman I, Blumberg BS (1987) Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: in vitro and in vivo studies. Proc Natl Acad Sci U S A 84:274鈥?78 CrossRef
    42. Blumberg BS, Millman I, Venkateswaran PS, Thyagarajan SP (1990) Hepatitis B virus and primary hepatocellular carcinoma: treatment of HBV carriers with Phyllanthus amarus. Vaccine 8:S86鈥揝92 CrossRef
    43. Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R (2002) Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol 81:17鈥?2 CrossRef
    44. Ott M, Thyagarajan SP, Gupta S (1997) Phyllanthus amarus suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. Eur J Clin Invest 27:908鈥?15 CrossRef
    45. Colombo R, de L Batista AN, Teles HL, Silva GH, Bomfim GC, Burgos RC, Cavalheiro AJ, da Silva Bolzani V, Silva DH, Pel铆cia CR, Guimar茫es FM, Heimberg MC (2009) Validated HPLC method for the standardization of Phyllanthus niruri (herb and commercial extracts) using corilagin as a phytochemical marker. Biomed Chromatogr 23:573鈥?80 CrossRef
    46. Shanker K, Singh M, Srivastava V, Verma R, Gupta A, Gupta M (2011) Simultaneous analysis of six bioactive lignans in Phyllanthus species by reversed phase hyphenated high performance liquid chromatographic technique. Acta Chromatogr 23:321鈥?37 CrossRef
    47. Murugaiyah V, Chan KL (2007) Determination of four lignans in Phyllanthus niruri L. by a simple high-performance liquid chromatography method with fluorescence detection. J Chromatogr A 1154:198鈥?04 CrossRef
    48. Wang CY, Lee SS (2005) Analysis and identification of lignans in Phyllanthus urinaria by HPLC-SPE-NMR. Phytochem Anal 16:120鈥?26 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
In this study, unsupervised and supervised classification methods were compared for comprehensive analysis of the fingerprints of 26 Phyllanthus samples from different geographical regions and species. A total of 63 compounds were identified and tentatively assigned structures for the establishment of fingerprints using high-performance liquid chromatography time-of-flight mass spectrometry (HPLC/TOFMS). Unsupervised and supervised pattern recognition technologies including principal component analysis (PCA), nearest neighbors algorithm (NN), partial least squares discriminant analysis (PLS-DA), and artificial neural network (ANN) were employed. Results showed that Phyllanthus could be correctly classified according to their geographical locations and species through ANN and PLS-DA. Important variables for clusters discrimination were also identified by PCA. Although unsupervised and supervised pattern recognitions have their own disadvantage and application scope, they are effective and reliable for studying fingerprints of traditional Chinese medicines (TCM). These two technologies are complementary and can be superimposed. Our study is the first holistic comparison of supervised and unsupervised pattern recognition technologies in the TCM chemical fingerprinting. They showed advantages in sample classification and data mining, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700