Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1纬
详细信息    查看全文
  • 作者:Gabriel Velez ; Marisa Lin ; Trace Christensen…
  • 关键词:HP1 ; HP1纬 ; CBX3 ; Molecular modeling ; Molecular dynamics ; Epigenetics ; Chromatin
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 全文大小:7,694 KB
  • 参考文献:1.Eissenberg JC, James T, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A 87:9923鈥?927CrossRef
    2.Lomberk G, Wallrath L, Urrutia R (2006) The Heterochromatin Protein 1 family. Genome Biol 7(7):228CrossRef
    3.Velez G, Urrutia R, Lomberk G (2013) Critical role of the HP1-histone methyl transferase pathways in cancer epigenetics. Med Epigenet 1(1):100鈥?05CrossRef
    4.Dialynas GK, Vitalini M, Wallrath LL (2008) Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res 647(1鈥?):13鈥?0CrossRef
    5.Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120鈥?24CrossRef
    6.Lachner M, O鈥機arroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116鈥?20CrossRef
    7.Daujat S et al (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280(45):38090鈥?8095CrossRef
    8.Aasland R, Stewart A (2005) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23:3168鈥?173CrossRef
    9.Canzio D et al (2013) A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496(7445):377鈥?81CrossRef
    10.Lomberk G et al (2012) Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kr眉ppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 287(16):13026鈥?3039CrossRef
    11.Brasher S et al (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 19(7):1587鈥?597CrossRef
    12.Thiru A et al (2004) Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 23(3):489鈥?99CrossRef
    13.Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucl Acids Res 35(Web Server Issue):W460鈥揥464
    14.Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24(11):1344鈥?348CrossRef
    15.Hirose S et al (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 23(16):2046鈥?053CrossRef
    16.Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Min Knowl Disc 11(3):213鈥?22CrossRef
    17.Linding R et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453鈥?459CrossRef
    18.Dosztanyi Z et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433鈥?434CrossRef
    19.Xue B et al (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804(4):996鈥?010CrossRef
    20.Deng X, Eickholt J, Cheng J (2009) PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinf 10:436CrossRef
    21.Wang L, Sauer U (2008) OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11):1401鈥?402CrossRef
    22.Yang Z et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369鈥?376CrossRef
    23.Prilusky J et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435鈥?438CrossRef
    24.McGuffin L (2008) Intrinsic disorder prediction from the analysis of multiple protein fold recognition models. Bioinformatics 24(16):1798鈥?804CrossRef
    25.Linding R et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701鈥?708CrossRef
    26.Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35(10):3375鈥?382CrossRef
    27.Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile鈥損rofile alignments by using multiple sources of structure information. Proteins 72(2):547鈥?56CrossRef
    28.Sali A, Blundell T (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779鈥?15CrossRef
    29.Inc AS (2012) Discovery studio modeling environment, release 3.5, in Accelrys Discovery Studio. Accelrys Software Inc, San Diego
    30.Willard L et al (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316鈥?319CrossRef
    31.Voss N, Gerstein M (2010) 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38(Web Server Issue):W555鈥揥562
    32.Fontes M et al (2003) Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J Biol Chem 278:27981鈥?7987CrossRef
    33.Gao M, Skolnick J (2009) From nonspecific DNA鈥損rotein encounter complexes to the prediction of DNA鈥損rotein interactions. PLoS Comput Biol 5(3):e1000341CrossRef
    34.Urrutia R et al (2014) Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins. J Mol Model 20(8):1鈥?0CrossRef
    35.Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second-generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179鈥?197CrossRef
    36.Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327鈥?41CrossRef
    37.Im W, Lee M, Brooks C (2003) Generalized born model with a simple smoothing function. J Comput Chem 24(14):1692鈥?702CrossRef
    38.Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34鈥?6CrossRef
    39.Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23(5):634鈥?36CrossRef
    40.Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633鈥?649CrossRef
    41.Wong YH, Lee T, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH, Huang HD, Ko MT, Hwang JK (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35:W588鈥揥594CrossRef
    42.Iakoucheva LM, Radivojac P, Brown CJ, O鈥機onnor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037鈥?049CrossRef
    43.Dou Y, Yao B, Zhang C (2014) PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine. Amino Acids 46(6):1459鈥?469
    44.Gao J, Thelen J, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9(12):2586鈥?600CrossRef
    45.Xue Y, Li A, Wang L, Feng H, Yao X (2006) PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinf 7:163CrossRef
    46.Li A, Xue Y, Jin C, Wang M, Yao X (2006) Prediction of N蔚-acetylation on internal lysines implemented in Bayesian Discriminant Method. Biochem Biophys Res Commun 350(4):818鈥?24
    47.Wang L, Du Y, Lu M, Li T (2012) ASEB: a web server for KAT-specific acetylation site prediction. Nucleic Acids Res 40:W376鈥揥379CrossRef
    48.Shao J, Xu D, Hu L, Kwan YW, Wang Y, Kong X, Ngai SM (2012) Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Mol BioSyst 8(11):2964鈥?973CrossRef
    49.Li S, Li H, Li M, Shyr Y, Xie L, Li Y (2009) Improved prediction of lysine acetylation by support vector machines. Protein Pept Lett 16(8):977鈥?83CrossRef
    50.Hou T et al (2014) LAceP: lysine acetylation site prediction using logistic regression classifiers. PLoS ONE 9(2):e89575CrossRef
    51.Shao J, Xu D, Tsai SN, Wang Y, Ngai SM (2009) Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS ONE 4(3):e4920CrossRef
    52.Shein D et al (2009) Incorporating structural characteristics for identification of protein methylation sites. J Comput Chem 30(9):1532鈥?543CrossRef
    53.Li A, Gao X, Ren J, Jin C, Xue Y (2009) BDM-PUB: computational prediction of protein ubiquitination sites with a Bayesian discriminant method
    54.Chen Z, Chen Y, Wang X, Wang C, Yan R, Zhang Z (2011) Prediction of protein ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS ONE 6(7):e22930CrossRef
    55.Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG, Iakoucheva LM (2010) Identification, analysis and prediction of protein ubiquitination sites. Proteins 78(2):365鈥?80CrossRef
    56.Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Zhao Y, Xue Y, Ren J (2014) GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res 42(W1):W325鈥揥330CrossRef
    57.Hornbeck PV, Kornhauser J, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261鈥揇270
    58.Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39(Database Issue):D253鈥揇260
    59.Wong E, Na D, Gsponer J (2013) On the importance of polar interactions for complexes containing intrinsically disordered proteins. PLoS Comput Biol 9(8):e1003192CrossRef
    60.Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283鈥?91CrossRef
    61.Munari F et al (2014) Characterization of the effects of phosphorylation by CK2 on the structure and binding properties of human HP1尾. FEBS Lett 588(7):1094鈥?099CrossRef
    62.Canzio D et al (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome
    idging mechanism for heterochromatin assembly. Mol Cell 41:67鈥?1CrossRef
    63.Munari F et al (2012) Methylation of lysine 9 in histone H3 directs alternative modes of highly dynamic interaction of heterochromatin protein hHP1尾 with the nucleosome. J Biol Chem 287(40):33756鈥?3765CrossRef
    64.Ruthenburg A et al (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983鈥?94CrossRef
    65.Smothers J, Henikoff S (2001) The hinge and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol Cell Biol 21(7):2555鈥?569CrossRef
    66.Kosugi S et al (2009) Six classes of nuclear localization signals specific to different binding grooves of importin 伪. J Biol Chem 284:478鈥?85CrossRef
    67.Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161鈥揇166CrossRef
    68.Fontes M, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297(15):1183鈥?194CrossRef
    69.Zhao T et al (2000) Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J Biol Chem 275(36):28332鈥?8338
    70.Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R (2006) Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 8:407鈥?15CrossRef
    71.Spassov V, Yan L (2008) A fast and accurate computational approach to protein ionization. Protein Sci 17(11):1955鈥?970CrossRef
    72.Sampath S et al (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27(4):596鈥?08CrossRef
    73.Papamokos G et al (2012) Structural role of RKS motifs in chromatin interactions: a molecular dynamics study of HP1 bound to a variably modified histone tail. Biophys J 102(8):1926鈥?933CrossRef
    74.Jacobs S, Khoransanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080鈥?083CrossRef
    75.Munari F et al (2013) Structural plasticity in human heterochromatin protein 1尾. PLoS ONE 8(4):e60887CrossRef
    76.Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792鈥?797CrossRef
  • 作者单位:Gabriel Velez (1) (2) (3) (4)
    Marisa Lin (1) (2) (3)
    Trace Christensen (1) (2) (3)
    William A. Faubion (1) (2) (3)
    Gwen Lomberk (1) (2) (3)
    Raul Urrutia (1) (2) (3)

    1. Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Guggenheim 10, Rochester, MN, 55905, USA
    2. Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Biophysics, Mayo Clinic, Rochester, MN, USA
    3. Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN, USA
    4. Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
HP1纬, a non-histone chromatin protein, has elicited significant attention because of its role in gene silencing, elongation, splicing, DNA repair, cell growth, differentiation, and many other cancer-associated processes, including therapy resistance. These characteristics make it an ideal target for developing small drugs for both mechanistic experimentation and potential therapies. While high-resolution structures of the two globular regions of HP1纬, the chromo- and chromoshadow domains, have been solved, little is currently known about the conformational behavior of the full-length protein. Consequently, in the current study, we use threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations to develop models that allow us to infer properties of full-length HP1纬 at an atomic resolution level. HP1纬 appears as an elongated molecule in which three Intrinsically Disordered Regions (IDRs, 1, 2, and 3) endow this protein with dynamic flexibility, intermolecular recognition properties, and the ability to integrate signals from various intracellular pathways. Our modeling also suggests that the dynamic flexibility imparted to HP1纬 by the three IDRs is important for linking nucleosomes with PXVXL motif-containing proteins, in a chromatin environment. The importance of the IDRs in intermolecular recognition is illustrated by the building and study of both IDR2 HP1纬鈭抜mportin-伪 and IDR1 and IDR2 HP1纬鈭扗NA complexes. The ability of the three IDRs for integrating cell signals is demonstrated by combined linear motif analyses and molecular dynamics simulations showing that posttranslational modifications can generate a histone mimetic sequence within the IDR2 of HP1纬, which when bound by the chromodomain can lead to an autoinhibited state. Combined, these data underscore the importance of IDRs 1, 2, and 3 in defining the structural and dynamic properties of HP1纬, discoveries that have both mechanistic and potentially biomedical relevance. Keywords HP1 HP1纬 CBX3 Molecular modeling Molecular dynamics Epigenetics Chromatin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700