Uncertainty-based multi-criteria calibration of rainfall-runoff models: a comparative study
详细信息    查看全文
  • 作者:Mahyar Shafii (1)
    Bryan Tolson (1)
    Loren Shawn Matott (2)
  • 关键词:Hydrologic modelling ; Multi ; criteria calibration ; Uncertainty analysis ; Bayesian inference ; GLUE
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:6
  • 页码:1493-1510
  • 全文大小:2,453 KB
  • 参考文献:1. Bahremand A et al (2007) WetSpa model application for assessing reforestation impacts on floods in Margecany–Hornad watershed, Slovakia. Water Resour Manage 21(8):1373-391 CrossRef
    2. Balin-Talamba D (2004) Hydrological behaviour through experimental and modeling approaches; Application to the Haute-Mentue catchment, PhD Thesis, Swiss Federal School of Technology of Lausanne
    3. Balin-Talamba D, Parent E, Musy A (2010) Bayesian multiresponse calibration of TOPMODEL: application to the Haute-Mentue catchment, Switzerland. Water Resour Res 46:W08524 CrossRef
    4. Bates BC, Campbell EP (2001) A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour Res 37(4):937-47 CrossRef
    5. Bates DM, Watts DG (1981) Parameter transformations for improved approximate confidence regions in nonlinear least squares. Ann Stat 9(6):1152-167 CrossRef
    6. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York CrossRef
    7. Beven KJ (2009) Comment on ‘‘Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling; by Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson. Stoch Environ Res Risk Assess 23:1059-060 CrossRef
    8. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279-98 CrossRef
    9. Beven KJ, Smith PJ, Freer J (2008) So just why would a modeller choose to be incoherent? J. Hydrology 354:15-2 CrossRef
    10. Beven K, Smith PJ, Wood A (2011) On the colour and spin of epistemic error (and what we might do about it). Hydrol Earth Syst Sci 15:3123-133 CrossRef
    11. Beven K, Smith PJ, Westerberg I, Freer J (2012) Comment on “Pursuing the method of multiple working hypotheses for hydrological modeling-by P. Clark et al. Water Resour Res 48:W11801 CrossRef
    12. Binley A, Beven K (1991) Physically-based modelling of catchment hydrology: a likelihood approach to reducing predictive uncertainty. In: Rycroft MJ, Farmer DG (eds) Computer modelling in the environmental sciences, the institute of mathematics and its applications conference series. Clarendon Press, Oxford, pp 75-8
    13. Blasone R-S, Madsen H, Rosbjerg D (2008a) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J Hydrology 353:18-2 CrossRef
    14. Blasone RS et al (2008b) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Res 31:630-48 CrossRef
    15. Blazkova S, Beven K (2009) A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour Res 45:W00B16 CrossRef
    16. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Boston, MA
    17. Boyle DP (2000) Multicriteria calibration of hydrological models. PhD Dissertation Thesis, University of Arizona
    18. Clark MP, Kavetski D, Fenicia F (2012) Reply to comment by K. Beven et al. on “Pursuing the method of multiple working hypotheses for hydrological modeling- Water Resour Res 48:W11802 CrossRef
    19. Freni G, Mannina G (2009) Bayesian approach for uncertainty quantification in water quality modelling: the influence of prior distribution. J Hydrol 392:31-9 CrossRef
    20. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapman & Hall/CRC, Boca Raton
    21. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751-64 CrossRef
    22. Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrol Process 22:3802-813 CrossRef
    23. Hamilton S (2007) Just say NO to equifinality. Hydrol Process 21(14):1979-980 CrossRef
    24. Hills SE, Smith AFM (1992) Parameterization issues in Bayesian inference. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 227-46
    25. Hong B, Strawderman RL, Swaney DP, Weinstein DA (2005) Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six. Water Resour Res 41:W03007
    26. Huard D, Mailhot A (2008) Calibration of hydrological model GR2M using Bayesian uncertainty analysis. Water Resour Res 44:W02424 CrossRef
    27. Jeremiah E, Sisson S, Marshall L, Mehrotra R, Sharma A (2011) Bayesian calibration and uncertainty analysis of hydrological models: a comparison of adaptive Metropolis and sequential Monte Carlo samplers. Water Resour Manage 47:W07547
    28. Jin X, Xu C-Y, Zhang Q, Singh VP (2010) Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol 383:147-55 CrossRef
    29. Johnston PR, Pilgrim DH (1976) Parameter optimization for watershed models. Water Resour Res 12(3):477-86 CrossRef
    30. Kavetski D, Franks SW, Kuczera G (2002) Confronting input uncertainty in environmental modeling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU, Washington, DC, pp 49-8
    31. Kavetski D, Kuczera G, Franks SW (2006) Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res 42:W03407. doi:10.1029/2005WR004368
    32. Kuczera G (1983) Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resour Res 19(5):1151-162 CrossRef
    33. Kuczera G, Mroczkowski M (1998) Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour Res 34(6):1481-489 CrossRef
    34. Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol 211(1-):69-5 CrossRef
    35. Kuczera G, Kavetski D, Franks S, Thyer M (2006) Towards a Bayesian total error analysis of conceptual rainfall-runoff models: characterising model error using storm-dependent parameters. J Hydrol 331(3-):161-77 CrossRef
    36. Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267-277 CrossRef
    37. Lamb R, Beven KJ, Myrab? S (1998) Use of spatially distributed water table observations to constrain uncertainty in a rainfall–runoff model. Adv Water Res 22(4):305-17 CrossRef
    38. Legates DR, McCabe GJ (1999) Evaluating the use of ‘‘goodness-of-fit’-measures in hydrologic and hydro-climatic model evaluation. Water Resour Res 35:233-41 CrossRef
    39. Li L, Xia J, Xu C-Y, Singh VP (2010) Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models. J Hydrol 390:210-21 CrossRef
    40. Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modeling. J Hydrol 283(1-):91-06 CrossRef
    41. Liu Y, Freer J, Beven K, Matgen P (2009) Towards a limits of acceptability approach to the calibration of hydrological models: extending observation error. J Hydrol 367:93-03 CrossRef
    42. Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235:276-88 CrossRef
    43. Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 130(1-):368-81 CrossRef
    44. Marshall L, Nott D, Sharma A (2007) Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework. Hydrol Process 21:847-61 CrossRef
    45. Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall–runoff simulations. Water Resour Res 41:W08406 CrossRef
    46. Montanari A (2007) What do we mean by “uncertainty- The need for a consistent wording about uncertainty in hydrology. HPToday 21(6):841-45
    47. Montanari A et al (2011) Interactive comment on “On the colour and spin of epistemic error (and what we might do about it)-by K. Beven. Hydrol Earth Syst Sci Discuss 8:C2885–C2891
    48. Moore RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci 30(2):273-97 CrossRef
    49. Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135-47 CrossRef
    50. Mroczkowski M, Raper GP, Kuczera G (1997) The quest for more powerful validation of conceptual catchment models. Water Resour Res 33:2325-335 CrossRef
    51. Qian SS, Stow CA, Borsuk ME (2003) On Monte Carlo methods for Bayesian inference. Ecol Model 159:269-77 CrossRef
    52. Razavi S et al (2010) Reducing the computational cost of automatic calibration through model pre-emption. Water Resour Res 46(11):W11523 CrossRef
    53. Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198:69-7 CrossRef
    54. Reichert P (1997) On the necessity of using imprecise probabilities for modelling environmental systems. Water Sci Technol 36(5):149-56 CrossRef
    55. Renard B, Kavetski D, Kuczera G, Thyer M (2010) Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. 2010(46):W05521
    56. Renard B et al (2011) Toward a reliable decomposition of predictive uncertainty in hydrological modeling: characterizing rainfall errors using conditional simulation. Water Resour Res 47:W11516
    57. Romanowicz RJ, Beven KJ, Tawn J (1994) Evaluation of predictive uncertainty in nonlinear hydrological models using a Bayesian approach. In: Barnett V, Turkman KF (eds) Statistics for the environment 2, water related issues. Wiley, Chichester, pp 297-15
    58. Schaefli B, Talamba DB, Musy A (2007) Quantifying hydrological modeling errors through a mixture of normal distributions. J Hydrol 332:303-15 CrossRef
    59. Seber GA, Wild CJ (1989) Nonlinear regression. John Wiley and Sons, New York (NY) CrossRef
    60. Shafii M, Smedt FD (2009) Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm. Hydrol Earth Syst Sci 13:2137-149 CrossRef
    61. Sorooshian S, Duan Q, Gupta VK (1993) Calibration of rainfall-runoff models: application of global optimization to the Sacramento Soil Moisture accounting model. Water Resour Res 29:1185-194 CrossRef
    62. Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour Res 44:W00B06 CrossRef
    63. Thiemann M, Trosset M, Gupta HV, Sorooshian S (2001) Bayesian recursive parameter estimation for hydrologic models. Water Resour Res 37(10):2521-535 CrossRef
    64. Thyer M et al (2009) Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour Res 45:W00B14 CrossRef
    65. Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39(8):1214. doi:10.1029/2002WR001746
    66. Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. doi:10.1029/2002WR001642
    67. Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2008) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 44:1-6
    68. Vrugt JA et al (2009) Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273-90 CrossRef
    69. Wagener T et al (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci 5(1):13-6 CrossRef
    70. Wang Z-M, Batelaan O, De Smedt F (1996) A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys Chem Earth 21(3):189-93 CrossRef
    71. Wei W, Clark JS, Vose JM (2010) Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. J. Hydrol 394:436-46 CrossRef
    72. Yadav M, Wagener T, Gupta H (2007) Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins. Adv Water Resour 30(8):1756-774 CrossRef
    73. Yang J, Reichert P, Abbaspour KC, Yang H, Xia J (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358:1-3 CrossRef
    74. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204(1-):83-7 CrossRef
    75. Yilmaz KK, Gupta HV, Wagener T (2008) A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resour Res 44:W09417 CrossRef
  • 作者单位:Mahyar Shafii (1)
    Bryan Tolson (1)
    Loren Shawn Matott (2)

    1. Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
    2. Center for Computational Research, University at Buffalo, Buffalo, NY, USA
  • ISSN:1436-3259
文摘
This study compares formal Bayesian inference to the informal generalized likelihood uncertainty estimation (GLUE) approach for uncertainty-based calibration of rainfall-runoff models in a multi-criteria context. Bayesian inference is accomplished through Markov Chain Monte Carlo (MCMC) sampling based on an auto-regressive multi-criteria likelihood formulation. Non-converged MCMC sampling is also considered as an alternative method. These methods are compared along multiple comparative measures calculated over the calibration and validation periods of two case studies. Results demonstrate that there can be considerable differences in hydrograph prediction intervals generated by formal and informal strategies for uncertainty-based multi-criteria calibration. Also, the formal approach generates definitely preferable validation period results compared to GLUE (i.e., tighter prediction intervals that show higher reliability) considering identical computational budgets. Moreover, non-converged MCMC (based on the standard Gelman–Rubin metric) performance is reasonably consistent with those given by a formal and fully-converged Bayesian approach even though fully-converged results requires significantly larger number of samples (model evaluations) for the two case studies. Therefore, research to define alternative and more practical convergence criteria for MCMC applications to computationally intensive hydrologic models may be warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700