Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley
详细信息    查看全文
  • 作者:Imrul Mosaddek Ahmed ; Umme Aktari Nadira ; Fangbin Cao ; Xiaoyan He ; Guoping Zhang…
  • 关键词:Aluminum ; Callose ; Citrate and malate secretion ; Drought ; Genotypic difference ; Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum)
  • 刊名:Planta
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:243
  • 期:4
  • 页码:973-985
  • 全文大小:1,705 KB
  • 参考文献:Ahmed IM, Dai H, Zheng W, Cao F, Zhang GP, Sun D, Wu FB (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60CrossRef PubMed
    Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang GP, Wu FB (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–12CrossRef
    Arroyave C, Tolrà R, Thuy T, Barceló J, Poschenrieder C (2013) Differential aluminum resistance in Brachiaria species. Environ Exp Bot 89:11–18CrossRef
    Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92CrossRef
    Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRef
    Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G, Bueno JM, Blair MW (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley-Blackwell, Oxford, pp 356–369CrossRef
    Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana abscisic acid-insensitive 8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406–421CrossRef PubMed PubMedCentral
    Cai S, Wu D, Jabeen Z, Huang Y, Huang Y, Zhang GP (2013) Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS ONE 8:e69776CrossRef PubMed PubMedCentral
    Chaves MM, Oliveira M (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384CrossRef PubMed
    Chen X-Y, Kim J-Y (2004) Callose synthesis in higher plants. Plant Signal Behav 4:489–492CrossRef
    Colmenero-Flores JM, Moreno LP, Smith CE, Covarrubias AA (1999) Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–104CrossRef PubMed PubMedCentral
    de Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73:205–217CrossRef
    Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321PubMed PubMedCentral
    Forster B, Ellis R, Moir J, Talame V, Sanguineti M, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy S (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168CrossRef
    Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091CrossRef PubMed
    Goldman I, Carter T, Patterson R (1989) A detrimental interaction of subsoil aluminum and drought stress on the leaf water status of soybean. Agron J 81:461–463CrossRef
    Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27–32CrossRef PubMed
    Horst WJ, Püschel A-K, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192:23–30CrossRef
    Ishikawa H, Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102:1203–1210PubMed PubMedCentral
    Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333CrossRef PubMed
    Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410CrossRef PubMed
    Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260CrossRef
    Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493CrossRef PubMed
    Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77:544–551CrossRef PubMed PubMedCentral
    Kollmeier M, Felle HH, Horst WJ (2013) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956CrossRef
    Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G (2013) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotech Lett 30:1275–1280CrossRef
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408CrossRef PubMed
    Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278CrossRef PubMed
    Massot N, Poschenrieder C, Barcelo J (1994) Aluminium-induced increase of zeatin riboside and dihydrozeatin riboside in Phaseolus vulgaris L. cultivars. J Plant Nutr 17:255–265CrossRef
    Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19CrossRef PubMed
    Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37CrossRef PubMed PubMedCentral
    Nayyar H, Walia D (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46:275–279CrossRef
    Nian H, Yang Z, Huang H, Yan X, Matsumoto H (2005) Combined effect of short-term water deficit stress and aluminum toxicity on citrate secretion from soybean roots. J Plant Nutr 27:1281–1293CrossRef
    Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972CrossRef PubMed
    Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551CrossRef PubMed PubMedCentral
    Rama Devi S, Prasad M (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165CrossRef
    Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212CrossRef PubMed PubMedCentral
    Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446CrossRef
    Saab IN, Sharp RE, Pritchard J (1992) Effect of inhibition of abscisic acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiol 99:26–33  
    Saftner RA, Wyse RE (1984) Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiol 74:951–955
    Serraj R, Sinclair T (2002) Osmolyte accumulation can it really help increase crop yield under drought conditions? Plant, Cell Environ 25:333–341CrossRef
    Sharp R (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell Environ 25:211–222CrossRef
    Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351CrossRef PubMed
    Shimazaki Y, Ookawa T, Hirasawa T (2005) The root tip and accelerating region suppress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress. Plant Physiol 139:458–465CrossRef PubMed PubMedCentral
    Silva S, Pinto-Carnide O, Martins-Lopes P, Matos M, Guedes-Pinto H, Santos C (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exp Bot 68:91–98CrossRef
    Silva S, Santos C, Matos M, Pinto-Carnide O (2011) Al toxicity mechanisms in tolerant and sensitive rye genotypes. Environ Exp Bot 75:89–97CrossRef
    Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 14:1017–1031CrossRef PubMed PubMedCentral
    Staß A, Horst W (2009) Callose in abiotic stress. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1 → 3)-β-glucans and related polysaccharides. Academic Press, New York, pp 499–524CrossRef
    Wang HL, Lee PD, Chen WL, Huang DJ, Su JC (2000) Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot 51:1991–1999CrossRef PubMed
    Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276CrossRef PubMed
    Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816CrossRef PubMed PubMedCentral
    Wu FB, Zhang GP, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78CrossRef
    Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant, Cell Environ 33:590–603CrossRef
    Yang Z-B, Eticha D, Rao IM, Horst WJ (2010) Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). J Exp Bot 61:3245–3258CrossRef PubMed PubMedCentral
    Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ (2011) Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris L.). New Phytol 192:99–113CrossRef PubMed
    Yang Z-B, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ (2012) Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris L.). J Exp Bot 63:3109–3125CrossRef PubMed PubMedCentral
    Yang ZB, Rao IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil 372:3–25CrossRef
    Zeng F, Wu X, Qiu B, Wu FB, Jiang L, Zhang GP (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 239:91–108CrossRef
    Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800CrossRef PubMed
    Zhao J, Sun H, Dai H, Zhang GP, Wu FB (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395–403CrossRef
    Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303CrossRef PubMed PubMedCentral
  • 作者单位:Imrul Mosaddek Ahmed (1) (2)
    Umme Aktari Nadira (1)
    Fangbin Cao (1)
    Xiaoyan He (1)
    Guoping Zhang (1)
    Feibo Wu (1)

    1. Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
    2. Plant Physiology Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
  • 刊物主题:Plant Sciences; Agriculture; Ecology; Forestry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2048
文摘
Main conclusion The drought-stimulated gene expression of NCED, SUS, and KS - DHN and ABA signal cross-talk with other phytohormones maintains barley root growth under drought stress at pH 4.0 plus polyethylene glycol plus aluminum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700