Thermodynamic Assessment of the Bi–Ni and Bi–Ni–X (X = Ag, Cu) Systems
详细信息    查看全文
  • 作者:Yuling Liu ; Shuhong Liu ; Cong Zhang ; Xingxu Lu…
  • 关键词:Bi–Ni ; Bi–Ni–Ag ; Bi–Ni–Cu ; thermodynamic modeling ; CALPHAD
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:1041-1056
  • 全文大小:2,590 KB
  • 参考文献:1.G.Y. Li and X.Q. Shi, Trans. Nonferrous Met. Soc. China 16, 739 (2006).CrossRef
    2.X.J. Liu, C.P. Wang, I. Ohnuma, S.L. Chen, R. Kainuma, K. Ishida, and A.Y. Chang, Sci. China: Technol. Sci. 53, 1495 (2010).CrossRef
    3.S.P. Gadag and S. Patra, J. Electron. Mater. 29, 1392 (2000).CrossRef
    4.M.R. Harrison, J.H. Vincent, and H.A.H. Steen, Solder. Surf. Mount Technol. 13, 21 (2001).CrossRef
    5.S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G.G. Advocate Jr, M. Griffin, C. Goldsmith, D.W. Henderson, T.A. Gosselin, D.E. King, J.J. Konrad, A. Sarkhel, and K.J. Puttlitz, IEEE Trans. Electron. Packag. Manuf. 25, 155 (2002).CrossRef
    6.K.W. Paik, Y.D. Jeon, and M.G. Cho, Proc. Electron. Compon. Technol. Conf. 1, 675 (2004).
    7.J. Wang, F.G. Meng, L.B. Liu, and Z.P. Jin, Trans. Nonferrous Met. Soc. China 21, 139 (2011).CrossRef
    8.G. Vassilev, V. Gandova, and P. Docheva, Cryst. Res. Technol. 44, 25 (2009).CrossRef
    9.G.P. Vassilev, J. Romanowska, and G. Wnuk, Int. J. Mater. Res. 98, 468 (2007).CrossRef
    10.S.K. Seo, M.G. Cho, and H.M. Lee, J. Electron. Mater. 36, 1536 (2007).CrossRef
    11.G.P. Vassilev, X.J. Liu, and K. Ishida, J. Phase Equilib. Diffus. 26, 161 (2005).CrossRef
    12.F. Gao, C. Wang, X. Liu, Y. Takaku, I. Ohnuma, and K. Ishida, J. Mater. Res. 24, 2644 (2009).CrossRef
    13.B. Marković, D. Živković, J. Vřešt’ál, D. Manasijević, D. Minić, N. Talijan, J. Stajić-Trošić, R. Todorović, and R. Todorović, Calphad 34, 294 (2010).CrossRef
    14.P. Samui, R. Agarwal, A. Padhi, and S.G. Kulkarni, J. Chem. Thermodyn. 57, 470 (2013).CrossRef
    15.R. Agarwal, P. Samui, and S.G. Kulkarni, J. Chem. Thermodyn. 57, 477 (2013).CrossRef
    16.H. Yoshida, T. Shima, T. Takahashi, T. Kaneko, T. Suzuki, H.M. Kimura, K. Asami, and A. Inoue, J. Magn. Magn. Mater. 239, 5 (2002).CrossRef
    17.P. Nash, Bull. Alloy Phase Diagrams 6, 345 (1985).CrossRef
    18.A. Portevin, Rev. Metal. 5, 110 (1908).
    19.G. Voss, Z. Anorg. Chem. 57, 34 (1908).CrossRef
    20.B.M. Shavinskii, P.I. Artyukhin, and Y.L. Mityakin, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 70 (1979).
    21.P. Feschotte and J.M. Rosset, J. Less-Common Met. 143, 31 (1988).CrossRef
    22.G. Hagg and G. Funke, Z. Physik. Chem. 6, 272 (1930).
    23.B. Predel and H. Ruge, Thermochim. Acta 3, 411 (1972).CrossRef
    24.M. Iwase and A. McLean, Metall. Trans. B 14B, 765 (1983).CrossRef
    25.L. Perring, J.J. Kuntz, F. Bussy, and J.C. Gachon, Intermetallics 7, 1235 (1999).CrossRef
    26.A.T. Dinsdale, Calphad 15, 317 (1991).CrossRef
    27.R.N. Kuz’min and S.V. Nikitina, Izv. Akad. Nauk SSSR, Metally 215 (1969).
    28.N. Zhuravlev, G. Zhdanov, and E. Smirnova, Russ. J. Phys. Metall. 13, 62 (1962).
    29.S. Lidin, V. Petricek, L. Stenberg, S. Furuseth, H. Fjellvåg, and A.K. Larsson, Solid State Sci. 2, 353 (2000).CrossRef
    30.M. Ruck and Z. Anorg, Allg. Chem. 625, 2050 (1999).CrossRef
    31.T. Hahn, International Tables␣for Crystallography; Volume A, Space Group Symmetry, 5th ed. (Dordrecht: Kluwer Academic, 2001).
    32.P. Fima and J. Romanowska, J. Min. Metall. Sect. B 51, 105 (2015).CrossRef
    33.E. Zoro, C. Servant, and B. Legendre, Calphad 31, 89 (2007).CrossRef
    34.X. Liu, F. Gao, C. Wang, and K. Ishida, J. Electron. Mater. 37, 210 (2008).CrossRef
    35.K.L. Meissner, Z. Metallkd. 14, 173 (1922).
    36.S. An Mey, Calphad 16, 255 (1992).CrossRef
    37.B. Markovic, D. Zivkovic, D. Manasijevic, M. Sokic, D. Minic, N. Talijan, and J. Stajic-Trosic, Arch. Metall. Mater. 59, 117 (2014).
    38.O. Teppo, J. Niemelä, and P. Taskinen, Thermochim. Acta 173, 137 (1990).CrossRef
    39.O. Redlich and A. Kister, Ind. Eng. Chem. 40, 345 (1948).CrossRef
    40.M. Hillert and M. Jarl, Calphad 2, 227 (1978).CrossRef
    41.B. Sundman, B. Jansson, and J.O. Andersson, Calphad 9, 153 (1985).CrossRef
    42.Y. Du, R. Schmid-Fetzer, and H. Ohtani, Z. Metallkd. 88, 545 (1997).
    43.J. Vizdal, M.H. Braga, A. Kroupa, K.W. Richter, D. Soares, L.F. Malheiros, and J. Ferreira, Calphad 31, 438 (2007).CrossRef
    44.M.S. Lee, C. Chen, and C.R. Kao, Chem. Mater. 11, 292 (1999).CrossRef
    45.H. Fjellvåg and S. Furuseth, J. Less-Common Met. 128, 177 (1987).CrossRef
    46.P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (Materials Park: ASM, 1991).
    47.T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (Metals Park: ASM International, 1990).
  • 作者单位:Yuling Liu (1)
    Shuhong Liu (1)
    Cong Zhang (1)
    Xingxu Lu (2)
    Chong Chen (1)
    Yong Du (1)
    Dragana Živković (3)

    1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, Hunan, China
    2. School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, China
    3. Technical Faculty, University of Belgrade, VJ 12, 19210, Bor, Serbia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The Bi–Ni system was reassessed by means of the calculation of phase diagrams (CALPHAD) method by considering the latest published experimental data. To maintain the compatibility in higher-order systems, the excess Gibbs energy of the solution phases was modeled with the Redlich–Kister polynomials, and a three-sublattice model, (Bi)0.3334(Ni,Va)0.3333(Va,Ni)0.3333, was used to describe the intermetallic compound BiNi with NiAs-type crystal structure. Compared with the previous thermodynamic description for the Bi–Ni system, noticeable improvements are achieved in the present work. The current thermodynamic parameters can well reproduce the newly published experimental data on thermodynamic properties. Based on the newly obtained parameters for the Bi–Ni system, as well as the thermodynamic descriptions for the Bi-Ag, Ni-Ag, Bi-Cu, and Ni-Cu systems in literature, a thermodynamic database of the Bi–Ni–Ag and Bi–Ni–Cu ternary systems was established by considering the available experimental data. The calculated phase equilibria in these ternary systems are in satisfactory agreement with experimental observations. Keywords Bi–Ni Bi–Ni–Ag Bi–Ni–Cu thermodynamic modeling CALPHAD

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700