NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?
详细信息    查看全文
  • 作者:Nicoletta Croce (1)
    Francesca Gelfo (1)
    Maria Teresa Ciotti (2)
    Giorgio Federici (3)
    Carlo Caltagirone (1)
    Sergio Bernardini (3)
    Francesco Angelucci (1)
  • 关键词:NPY ; miR ; 30a ; 5p ; BDNF ; Primary cortical neurons ; Alzheimer disease
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2013
  • 出版时间:2 - April 2013
  • 年:2013
  • 卷:376
  • 期:1
  • 页码:189-195
  • 参考文献:1. Finch CE, Cohen DM (1997) Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp Neurol 143:82-02. doi:10.1006/exnr.1996.6339 CrossRef
    2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885-90. doi:10.1016/S0006-291X(84)80190-4 CrossRef
    3. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99-25. doi:10.1016/j.pneurobio.2005.06.003 CrossRef
    4. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71-24. doi:10.1016/S0301-0082(00)00014-9 CrossRef
    5. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow YW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7:695-02. doi:10.1016/0896-6273(91)90273-3 CrossRef
    6. Connor B, Young D, Yan Q, Faull QRLM, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Mol Brain Res 49:71-1. doi:10.1016/S0169-328X(97)00125-3 CrossRef
    7. Angelucci F, Spalletta G, Iulio FD, Ciaramella A, Salani F, Varsi AE, Gianni W, Sancesario G, Caltagirone C, Bossu P (2010) Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res 7:15-0. doi:10.2174/156720510790274473 CrossRef
    8. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59:201-20. doi:10.1016/j.brainresrev.2008.07.007 CrossRef
    9. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, Leyhe T (2011) Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol 14:399-04. doi:10.1017/S1461145710001008 CrossRef
    10. Croce N, Dinallo V, Ricci V, Federici G, Caltagirone C, Bernardini S, Angelucci F (2011) Neuroprotective effect of neuropeptide Y against beta-amyloid 25-5 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. Neurodener Dis 8:300-09. doi:10.1159/000323468 CrossRef
    11. Rose JB, Crews L, Rockenstein E, Adame A, Mante M, Hersh LB, Gage FH, Spencer B, Potkar R, Marr RA, Masliah E (2009) Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer’s disease. J Neurosci 29:1115-125. doi:10.1523/JNEUROSCI.4220-08.2009 CrossRef
    12. Croce N, Ciotti MT, Gelfo F, Cortelli S, Federici G, Caltagirone C, Bernardini S, Angelucci F (2012) Neuropeptide Y protects rat cortical neurons against beta-amyloid toxicity and re-establishes synthesis and release of nerve growth factor. ACS Chem Neurosci 3:312-18. doi:10.1021/cn200127e CrossRef
    13. Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H, Hashido K (2011) MicroRNA function and neurotrophin BDNF. Neurochem Int 59:551-58. doi:10.1016/j.neuint.2011.06.009 CrossRef
    14. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030-042. doi:10.1093/hmg/ddn201 CrossRef
    15. di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T (2009) Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 184:423-35. doi:10.1083/jcb.200807033 CrossRef
    16. Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1-6
    17. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-5 region to aggregation and neurotoxicity. J Neurochem 64:253-65. doi:10.1046/j.1471-4159.1995.64010253.x CrossRef
    18. Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91:1470-474. doi:10.1073/pnas.91.4.1470 CrossRef
    19. Terzi E, Holzemann G, Seelig J (1994) Reversible random coil-beta-sheet transition of the Alzheimer beta-amyloid fragment (25-5). Biochemistry 33:1345-350. doi:10.1021/bi00172a009 CrossRef
    20. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270-274. doi:10.1073/pnas.91.8.3270 CrossRef
    21. Hansel DE, Eipper BA, Ronnett GV (2001) Neuropeptide Y functions as a neuroproliferative factor. Nature 410:940-44. doi:10.1038/35073601 CrossRef
    22. Zukowska-Grojec Z, Pruszczyk P, Colton C, Yao J, Shen GH, Myers AK, Wahlestedt C (1993) Mitogenic effect of neuropeptide Y in rat vascular smooth muscle cells. Peptides 14:263-68. doi:10.1016/0196-9781(93)90040-N CrossRef
    23. Protas L, Qu J, Robinson RB (2003) Neuropeptide Y: neurotransmitter or trophic factor in the heart? News Physiol Sci 18:181-85
    24. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1045-062. doi:10.1089/cmb.2005.12.1047
    25. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102-14. doi:10.1038/nrg2290 CrossRef
    26. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-97. doi:10.1016/S0092-8674(04)00045-5 CrossRef
    27. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283-89. doi:10.1038/nature04367 CrossRef
    28. Hébert SS, Horré K, Nicola? L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33:422-28. doi:10.1016/j.nbd.2008.11.009 CrossRef
    29. Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S (2012) The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209:94-05 CrossRef
    30. Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46:11-9. doi:10.1007/s12035-012-8234-4 CrossRef
    31. Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618-623. doi:10.1126/science.7907431 CrossRef
    32. Liu H, Liu Z, Xu X, Yang X, Wang H, Li Z (2010) Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons. Pharmazie 65:219-23
    33. Yoshimura R, Ito K, Endo Y (2009) Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures. Neurosci Lett 450:262-65. doi:10.1016/j.neulet.2008.12.010 CrossRef
    34. Mellios N, Huang H-S, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006-014. doi:10.1016/j.biopsych.2008.11.019 CrossRef
  • 作者单位:Nicoletta Croce (1)
    Francesca Gelfo (1)
    Maria Teresa Ciotti (2)
    Giorgio Federici (3)
    Carlo Caltagirone (1)
    Sergio Bernardini (3)
    Francesco Angelucci (1)

    1. Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
    2. Institute of Cellular Biology and Neurobiology, National Council of Research, Rome, Italy
    3. Department of Internal Medicine, Tor Vergata University, Rome, Italy
  • ISSN:1573-4919
文摘
Using in vitro models of Alzheimer’s disease (AD), we found that the toxic effects of amyloid beta 25-5 (Aβ25-5) on the neurotrophin brain-derived neurotrophic factor (BDNF) were counteracted by pre-incubation with neuropeptide Y (NPY), a neuropeptide expressed within the central nervous system. Nonetheless, the mechanism of action of NPY on BDNF neuronal production in the presence of Aβ is not known. BDNF expression might be directly regulated by microRNA (miRs), small non-coding DNA fragments that regulate the expression of target genes. Thus, there is the possibility that miRs alterations are present in AD-affected neurons and that NPY influences miR expression. To test this hypothesis, we exposed NPY-pretreated primary rat cortical neurons to Aβ25-5 and measured miR-30a-5p (a member of the miR-30a family involved in BDNF tuning expression) and BDNF mRNA and protein expression after 24 and 48?h. Our results demonstrated that pre-treatment with NPY decreased miR-30a-5p expression and increased BDNF mRNA and protein expression at 24 and 48?h of incubation with Aβ. Therefore, this study demonstrates that NPY modulates BDNF and its regulating microRNA miR-30a-5p in opposite direction with a mechanism that possibly contributes to the neuroprotective effect of NPY in rat cortical neurons exposed to Aβ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700