Qualitative Analysis for a New Integrable Two-Component Camassa–Holm System with Peakon and Weak Kink Solutions
详细信息    查看全文
  • 作者:Kai Yan ; Zhijun Qiao ; Zhaoyang Yin
  • 刊名:Communications in Mathematical Physics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:336
  • 期:2
  • 页码:581-617
  • 全文大小:456 KB
  • 参考文献:1.Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der MathematischenWissenschaften, vol. 343. Springer, Berlin (2011)View Article
    2.Bressan A., Constantin A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215-39 (2007)View Article MATH MathSciNet
    3.Camassa R., Holm D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-664 (1993)View Article ADS MATH MathSciNet
    4.Camassa R., Holm D., Hyman J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1-3 (1994)View Article
    5.Chen M., Liu S-Q., Zhang Y.: A 2-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1-5 (2006)View Article ADS MATH MathSciNet
    6.Coclite G.M., Karlsen K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 233, 60-1 (2006)View Article MATH MathSciNet
    7.Constantin A.: Global existence of solutions and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321-62 (2000)View Article MATH MathSciNet
    8.Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa 26, 303-28 (1998)MATH MathSciNet
    9.Constantin A., Escher J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475-04 (1998)View Article MATH MathSciNet
    10.Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229-43 (1998)View Article MATH MathSciNet
    11.Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. (2) 173, 559-68 (2011)View Article MATH MathSciNet
    12.Constantin A., Ivanov R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129-132 (2008)View Article ADS MATH MathSciNet
    13.Constantin A., Ivanov R., Lenells J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559-575 (2010)View Article ADS MATH MathSciNet
    14.Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Commun. Math. Helv. 78, 787-04 (2003)View Article MATH MathSciNet
    15.Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165-86 (2009)View Article MATH MathSciNet
    16.Constantin A., Molinet L.: Global weak solutions for a shallow water equation. Commun. Math. Phys. 211, 45-1 (2000)View Article ADS MATH MathSciNet
    17.Constantin, A. Strauss W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603-10 (2000)View Article MATH MathSciNet
    18.Dai H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127, 193-07 (1998)View Article MATH MathSciNet
    19.Danchin R.: A few remarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953-88 (2001)MATH MathSciNet
    20.Degasperis A., Holm D.D., Hone A.N.W.: A new integral equation with peakon solutions. Theor. Math. Phys. 133, 1463-474 (2002)View Article MathSciNet
    21.Degasperis A., Procesi M.: Asymptotic Integrability. Symmetry and Perturbation Theory (Rome, 1998), pp. 23-7. World Scientific Publishing, River Edge (1999)
    22.Dullin H.R., Gottwald G.A., Holm D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501-504 (2001)View Article ADS
    23.Escher J., Kolev B.: The Degasperis–Procesi equation as a non-metric Euler equation. Math. Z. 269, 1137-153 (2011)View Article MATH MathSciNet
    24.Escher J., Lechtenfeld O., Yin Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493-13 (2007)View Article MATH MathSciNet
    25.Escher J., Liu Y., Yin Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457-85 (2006)View Article MATH MathSciNet
    26.Escher J., Liu Y., Yin Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87-17 (2007)View Article MATH MathSciNet
    27.Escher J., Yin Z.: Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 256, 479-08 (2009)View Article MATH MathSciNet
    28.Fokas A.: On a class of physically important integrable equations. Phys. D 87, 145-50 (1995)View Article MATH MathSciNet
    29.Fokas A., Fuchssteiner B.: Symplectic structures, their B?cklund transformation and hereditary symmetries. Phys. D 4, 47-6 (1981)View Article MATH MathSciNet
    30.Fuchssteiner B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229-43 (1996)View Article MATH MathSciNet
    31.Guan C., Yin Z.: Global existen
  • 作者单位:Kai Yan (1)
    Zhijun Qiao (2)
    Zhaoyang Yin (1) (3)

    1. Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
    2. Department of Mathematics, University of Texas-Pan American, Edinburg, TX, 78541, USA
    3. Faculty of Information Technology, Macau University of Science and Technology, Macau, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
This paper is devoted to a new integrable two-component Camassa–Holm system with peaked solitons (peakons) and weak-kink solutions. It is the first integrable system that admits weak kink and kink–peakon interactional solutions. In addition, the new system includes both standard (quadratic) and cubic Camassa–Holm equations as two special cases. In the paper, we first establish the local well-posedness for the Cauchy problem of the system, and then derive a precise blow-up scenario and a new blow-up result for strong solutions to the system with both quadratic and cubic nonlinearity. Furthermore, its peakon and weak kink solutions are discussed as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700