[99mTc(CO)3]+-(HE)3-ZIGF1R:4551, a new Affibody conjugate for visualization of insulin-like growth
详细信息    查看全文
  • 作者:Anna Orlova (1)
    Camilla Hofstr?m (2)
    Joanna Strand (3)
    Zohreh Varasteh (1)
    Mattias Sandstrom (4)
    Karl Andersson (3) (5)
    Vladimir Tolmachev (3) (6)
    Torbj?rn Gr?slund (2)
  • 关键词:Affibody molecules ; Molecular imaging ; Technetium ; 99m ; HEHEHE tag ; IGF ; 1R ; Biodistribution
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:40
  • 期:3
  • 页码:439-449
  • 全文大小:531KB
  • 参考文献:1. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505-8. CrossRef
    2. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65:11118-8. CrossRef
    3. Wu JD, Haugk K, Coleman I, Woodke L, Vessella R, Nelson P, et al. Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clin Cancer Res. 2006;12:6153-0. CrossRef
    4. Thomas F, Holly JM, Persad R, Bahl A, Perks CM. Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor. Prostate. 2010;70:856-5.
    5. Harris LN, You F, Schnitt SJ, Witkiewicz A, Lu X, Sgroi D, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007;13:1198-07. CrossRef
    6. Bruchim I, Attias Z, Werner H. Targeting the IGF1 axis in cancer proliferation. Expert Opin Ther Targets. 2009;13:1179-2. CrossRef
    7. Weroha SJ, Haluska P. IGF-1 receptor inhibitors in clinical trials -early lessons. J Mammary Gland Biol Neoplasia. 2008;13:471-3. CrossRef
    8. Rosenzweig SA, Atreya HS. Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol. 2010;80:1115-4. CrossRef
    9. Chi KN, Bjartell A, Dearnaley D, Saad F, Schr?der FH, Sternberg C, et al. Castration-resistant prostate cancer: from new pathophysiology to new treatment targets. Eur Urol. 2009;56:594-05. CrossRef
    10. Antonarakis ES, Carducci MA, Eisenberger MA. Novel targeted therapeutics for metastatic castration-resistant prostate cancer. Cancer Lett. 2010;291:1-3. CrossRef
    11. Pappo AS, Patel SR, Crowley J, Reinke DK, Kuenkele KP, Chawla SP, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol. 2011;29:4541-. CrossRef
    12. Ramalingam SS, Spigel DR, Chen D, Steins MB, Engelman JA, Schneider CP, et al. Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin-like growth factor-1 receptor, for advanced-stage non-small-cell lung cancer. J Clin Oncol. 2011;29:4574-0. CrossRef
    13. Juergens H, Daw NC, Geoerger B, Ferrari S, Villarroel M, Aerts I, et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol. 2011;29:4534-0. CrossRef
    14. Huang F, Greer A, Hurlburt W, Han X, Hafezi R, Wittenberg GM, et al. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res. 2009;69:161-0. CrossRef
    15. Gualberto A, Melvin CL, Dean A, Ang AL, Reynolds JM, Lee AV, et al. Characterization of NSCLC patients responding to anti-IGF-IR therapy. J Clin Oncol. 2008;26 Suppl:abstract 8000.
    16. Fleuren ED, Versleijen-Jonkers YM, van de Luijtgaarden AC, Molkenboer-Kuenen JD, Heskamp S, Roeffen MH, et al. Predicting IGF-1R therapy response in bone sarcomas: immuno-SPECT imaging with radiolabeled R1507. Clin Cancer Res. 2011;17:7693-03. CrossRef
    17. Cornelissen B, McLarty K, Kersemans V, Reilly RM. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nucl Med Biol. 2008;35:645-3. CrossRef
    18. Cao L, Yu Y, Darko I, Currier D, Mayeenuddin LH, Wan X, et al. Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody. Cancer Res. 2008;68:8039-8. CrossRef
    19. Zha J, O’Brien C, Savage H, Huw LY, Zhong F, Berry L, et al. Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther. 2009;8:2110-1. CrossRef
    20. Ahlgren S, Tolmachev V. Radionuclide molecular imaging using Affibody molecules. Curr Pharm Biotechnol. 2010;11:581-. CrossRef
    21. Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A, Wennborg A, et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med. 2010;51:892-. CrossRef
    22. Tolmachev V, Malmberg J, Hofstr?m C, Abrahmsén L, Bergman T, Sj?berg A, et al. Imaging of IGF-1R in prostate cancer xenografts using the Affibody molecule 111In-DOTA-Z IGF1R:4551. J Nucl Med. 2012;53:146-3. CrossRef
    23. Tolmachev V, Hofstr?m C, Malmbeg J, Ahlgren S, Hosseinimehr SJ, Sandstr?m M, et al. HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [99(m)Tc(CO)3](+), and shows improved biodistribution with reduced hepatic radioactivity accumulation. Bioconjug Chem. 2010;21:2013-2. CrossRef
    24. Hofstr?m C, Orlova A, Altai M, W?ngsell F, Gr?slund T, Tolmachev V. The use of a HEHEHE-purification tag improves biodistribution of Affibody molecules site-specifically labeled with 99mTc, 111In and 125I compared to a hexahistidine-tag. J Med Chem. 2011;54:3817-6. CrossRef
    25. Lundberg E, H?idén-Guthenberg I, Larsson B, Uhlén M, Gr?slund T. Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods. 2007;319:53-3. CrossRef
    26. Bj?rkelund H, Gedda L, Barta P, Malmqvist M, Andersson K. Gefitinib induces epidermal growth factor receptor dimers which alters the interaction characteristics with 125I-EGF. PLoS One. 2011;6:e24739. CrossRef
    27. Orlova A, Nilsson FY, Wikman M, Widstr?m C, St?hl S, Carlsson J, et al. Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med. 2006;47:512-.
    28. Olmos D, Martins AS, Jones RL, Alam S, Scurr M, Judson IR. Targeting the insulin-like growth factor 1 receptor in Ewing’s sarcoma: reality and expectations. Sarcoma. 2011;2011:402508. CrossRef
    29. Huang F, Hurlburt W, Greer A, Reeves KA, Hillerman S, Chang H, et al. Differential mechanisms of acquired resistance to insulin-like growth factor-i receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Res. 2010;70:7221-1. CrossRef
    30. van Dongen GA, Visser GW, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379-9. CrossRef
    31. Heskamp S, van Laarhoven HW, Molkenboer-Kuenen JD, Franssen GM, Versleijen-Jonkers YM, Oyen WJ, et al. ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model. J Nucl Med. 2010;51:1565-2. CrossRef
    32. W?llberg H, Orlova A, Altai M, Hosseinimehr SJ, Widstr?m C, Malmberg J, et al. Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J Nucl Med. 2011;52:461-. CrossRef
    33. W?llberg H, L?fdahl PK, Tschapalda K, Uhlén M, Tolmachev V, Nygren PK, et al. Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expr Purif. 2011;76:127-5. CrossRef
    34. Lindberg H, Hofstr?m C, Altai M, Honorvar H, W?llberg H, Orlova A, et al. Evaluation of a HER2-targeting affibody molecule combining an N-terminal HEHEHE-tag with a GGGC chelator for (99m)Tc-labelling at the C terminus. Tumour Biol. 2012;33:641-1. CrossRef
    35. Surinya KH, Forbes BE, Occhiodoro F, Booker GW, Francis GL, Siddle K, et al. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J Biol Chem. 2008;283:5355-3. CrossRef
    36. Tolmachev V, Orlova A. Influence of labelling methods on biodistribution and imaging properties of radiolabelled peptides for visualisation of molecular therapeutic targets. Curr Med Chem. 2010;17:2636-5. CrossRef
    37. Li J, Lundberg E, Vernet E, Larsson B, H?idén-Guthenberg I, Gr?slund T. Selection of affibody molecules to the ligand-binding site of the insulin-like growth factor-1 receptor. Biotechnol Appl Biochem. 2010;55:99-09. CrossRef
  • 作者单位:Anna Orlova (1)
    Camilla Hofstr?m (2)
    Joanna Strand (3)
    Zohreh Varasteh (1)
    Mattias Sandstrom (4)
    Karl Andersson (3) (5)
    Vladimir Tolmachev (3) (6)
    Torbj?rn Gr?slund (2)

    1. Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
    2. Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
    3. Division of Biomedical Radiation Sciences, Uppsala University, Uppsala, Sweden
    4. Medical Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
    5. Ridgeview Instruments AB, Uppsala, Sweden
    6. Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
  • ISSN:1619-7089
文摘
Purpose Radionuclide imaging of insulin-like growth factor type 1 receptor (IGF-1R) expression in tumours might be used for selection of patients who would benefit from IGF-1R-targeted therapy. We have previously shown the feasibility of IGF-1R imaging using the Affibody molecule 111In-DOTA-His6-ZIGF1R:4551. The use of 99mTc instead of 111In should improve sensitivity and resolution of imaging, and reduce the dose burden to patients. We hypothesized that inclusion of a HEHEHE tag instead of a His6 tag in ZIGF1R:4551 would permit its convenient purification using IMAC, enable labelling with [99mTc(CO)3]+, and improve its biodistribution. Methods ZIGF1R:4551 was expressed with a HEHEHE tag in the N terminus. The resulting (HE)3-ZIGF1R:4551 construct was labelled with [99mTc(CO)3]+. Targeting of IGF-1R-expressing cells using [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 was evaluated in vitro and in vivo. Results (HE)3-ZIGF1R:4551 was stably labelled with 99mTc with preserved specific binding to IGF-1R-expressing DU-145 prostate cancer cells in vitro. In mice, [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 accumulated in IGF-1R-expressing organs (pancreas, stomach, lung and salivary gland). [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 demonstrated 3.6-fold lower accumulation in the liver and spleen than 111In-DOTA-ZIGF1R:4551. In NMRI nu/nu mice with DU-145 prostate cancer xenografts, the tumour uptake was 1.32?±-.11 %ID/g and the tumour-to-blood ratio was 4.4?±-.3 at 8?h after injection. The xenografts were visualized using a gamma camera 6?h after injection. Conclusion 99mTc(CO)3]+-(HE)3-ZIGF1R:4551 is a promising candidate for visualization of IGF-1R expression in malignant tumours.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700