Canard Theory and Excitability
详细信息    查看全文
  • 作者:Martin Wechselberger (4)
    John Mitry (4)
    John Rinzel (5)
  • 关键词:Canards ; Geometric singular perturbation theory ; Excitability ; Neural dynamics ; Firing threshold manifold ; Separatrix ; Transient attractor
  • 刊名:Lecture Notes in Mathematics
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:1
  • 期:1
  • 页码:89-132
  • 全文大小:2,827 KB
  • 参考文献:1. R. Amir, M. Michaelis, M. Devor, Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained be depolarizing afterpotentials. J. Neurosci. 22, 1187-198 (2002)
    2. E. Beno?t, J. Callot, F. Diener, M. Diener, Chasse au canard. Collectanea Math. 31-2, 37-19 (1981)
    3. E. Beno?t, Systémes lents-rapides dans ${\mathbb{R}}^{3}$ et leur canards. Asterisque 109-10, 159-91 (1983)
    4. A. Borisyuk, J. Rinzel, Understanding neuronal dynamics by geometric dissection of minimal models, in / Models and Methods in Neurophysics, Proc. Les Houches Summer School 2003, (Session LXXX), ed. by C. Chow, B. Gutkin, D. Hansel, C. Meunier, J. Dalibard (Elsevier, 2005), pp. 19-2. ISBN:978-0-444-51792-0
    5. M. Br?ns, T. Kaper, H. Rotstein, Focus issue: mixed mode oscillations: experiment, computation, and analysis. Chaos 18, 015101 (2008), 1-
    6. M. Br?ns, M. Krupa, M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Comm. 49, 39-3 (2006)
    7. P. De Maesschalck, F. Dumortier, Slow-fast Bogdanov-Takens bifurcations. J. Differ. Equat. 250, 1000-025 (2011)
    8. P. De Maesschalck, F. Dumortier, M. Wechselberger, Special issue on bifurcation delay. Discrete Cont. Dyn. Sys. S 2(4), 723-023 (2009) CrossRef
    9. P. De Maesschalck, M. Wechselberger, Unfolding of a singularly perturbed system modelling type I excitability, preprint (2013)
    10. M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time-scales. SIAM Rev. 54, 211-88 (2012) CrossRef
    11. M. Desroches, M. Krupa, S. Rodrigues, Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67(4), 989-017 (2013) CrossRef
    12. C. Dickson, J. Magistretti, M. Shalinsky, E. Fransen, M. Hasselmo, A. Alonso, Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol. 83, 2562-579 (2000)
    13. E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: continuation and bifurcation software for ordinary differential equations (with HomCont)
    14. J. Drover, J. Rubin, J. Su, B. Ermentrout, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math. 65, 65-2 (2004) CrossRef
    15. F. Dumortier, R. Roussarie, Canard cycles and center manifolds. In: Memoirs of the American Mathematical Society, 577 (1996)
    16. B. Ermentrout, M. Wechselberger, Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 8, 253-78 (2009) CrossRef
    17. N. Fenichel, Geometric singular perturbation theory. J Differ. Equat. 31, 53-8 (1979) CrossRef
    18. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 7, 252-78 (1955)
    19. R. FitzHugh, Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 867-96 (1960) CrossRef
    20. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 455-66 (1961) CrossRef
    21. R. FitzHugh, Anodal excitation in the Hodgkin-Huxley nerve model. Biophys J. 16, 209-26 (1976) CrossRef
    22. J. Guckenheimer, Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst. 7, 1355-377 (2008) CrossRef
    23. J. Guckenheimer, P. Holmes, / Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983) CrossRef
    24. J. Guckenheimer, M. Wechselberger, L.-S. Young, Chaotic attractors of relaxation oscillators. Nonlinearity 19, 709-20 (2006) CrossRef
    25. Y. Gutfreund, Y. Yarom, I. Segev, Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol. 483, 621-40 (1995)
    26. E. Harvey, V. Kirk, H. Osinga, J. Sneyd, M. Wechselberger, Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 20, 045104 (2010) CrossRef
    27. E. Harvey, V. Kirk, J. Sneyd, M. Wechselberger, Multiple timescales, mixed-mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci. 21, 639-83 (2011) CrossRef
    28. G. Hek, Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347-86 (2010) CrossRef
    29. A.L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107, 165-81 (1948)
    30. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-44 (1952)
    31. E. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, / Computational Neuroscience (MIT Press, Cambridge, MA, 2007)
    32. C.K.R.T. Jones, Geometric singular perturbation theory, in dynamical systems. Springer Lect. Notes Math. 1609, 44-20 (1995) CrossRef
    33. T. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems. Proc. Symp. Appl. Math. 56, 85-31 (1999) CrossRef
    34. J. Keener, J. Sneyd, / Mathematical Physiology (Springer, New York, 1998)
    35. S. Khosrovani, R. van der Giessen, C. de Zeeuw, M. de Jeu, In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. PNAS 104, 15911-5916 (2007) CrossRef
    36. P.E. Kloeden, C. P?tzsche, / Nonautonomous Dynamical Systems in the Life Sciences, Chap.- (Springer, Heidelberg, 2013)
    37. P.E. Kloeden, M. Rasmussen, / Nonautonomous Dynamical Systems (American Mathematical Society, Providence, 2011)
    38. M. Krupa, N. Popovic, N. Kopell, H. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18, 015106 (2008) CrossRef
    39. M. Krupa, P. Szmolyan, Relaxation oscillations and canard explosion. J. Differ. Equat. 174, 312-68 (2001) CrossRef
    40. M. Krupa, M. Wechselberger, Local analysis near a folded saddle-node singularity. J. Differ. Equat. 248, 2841-888 (2010) CrossRef
    41. M. McCarthy, N. Kopell, The effect of propofol anesthesia on rebound spiking. SIAM J. Appl. Dyn. Syst. 11, 1674-697 (2012) CrossRef
    42. X. Meng, G. Huguet, J. Rinzel, Type III excitability, slope sensitivity and coincidence detection. Discrete Cont. Dyn. Syst. A 32, 2729-757 (2012) CrossRef
    43. A. Milik, P. Szmolyan, H. L?ffelmann, E. Gr?ller, The geometry of mixed-mode oscillations in the 3d-autocatalator. Int. J. Bifurcat. Chaos 8, 505-19 (1998) CrossRef
    44. J. Mitry, M. McCarthy, N. Kopell, M. Wechselberger, Excitable neurons, firing threshold manifold and canards. J. Math. Neurosci. 3, 12 (2013) CrossRef
    45. J.S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061-070 (1962) CrossRef
    46. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193-13 (1981) CrossRef
    47. C. Del Negro, C. Wilson, R. Butera, H. Rigatto, J. Smith, Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophys. J. 82, 206-4 (2002) CrossRef
    48. S. Prescott, Y. de Koninck, T. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4(10), e1000198 (2008)
    49. R. O’Malley, / Singular Perturbation Methods for Ordinary Differential Equations (Springer, New York, 1991) CrossRef
    50. M. Rasmussen, Attractivity and bifurcation for nonautonomous dynamical systems, / Lecture Notes in Mathematics, vol. 1907 (Springer, Heidelberg, 2007)
    51. J. Rinzel, Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44, 2944-946 (1985)
    52. J. Rinzel, G. Ermentrout, Analysis of neural excitability and oscillations, in / Methods in Neuronal Modelling: From Synapses To Networks, 2nd edn., ed. by C. Koch, I. Segev (MIT Press, Cambridge, MA, 1998), pp. 251-91
    53. J. Rothman, P. Manis, The roles potassium currents play in regulating the electric activity of ventral cochlear neucleus neurons. J. Neurophysiol. 89, 3097-113 (2003) CrossRef
    54. H. Rotstein, M. Wechselberger, N. Kopell, Canard induced mixed-mode oscillations in a medial enorhinal cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 7, 1582-611 (2008) CrossRef
    55. J. Rubin, D. Terman, Geometric singular perturbation analysis of neuronal dynamics, in / Handbook of Dynamical Systems, vol. 2, ed. by B. Fiedler (Elsevier Science B.V., Amsterdam, 2002)
    56. J. Rubin, M. Wechselberger, Giant Squid - Hidden Canard: the 3D geometry of the Hodgkin Huxley model. Biol. Cyb. 97, 5-2 (2007) CrossRef
    57. P. Szmolyan, M. Wechselberger, Canards in ${\mathbb{R}}^{3}$ . J. Differ. Equat. 177, 419-53 (2001) CrossRef
    58. P. Szmolyan, M. Wechselberger, Relaxation oscillations in ${\mathbb{R}}^{3}$ . J. Differ. Equat. 200, 69-04 (2004) CrossRef
    59. F. Takens, Constrained equations; a study of implicit differential equations and their discontinuous solutions, in Structural stability, the theory of catastrophes, and applications in the sciences. / Lecture Notes in Mathematics, vol. 525 (Springer, Berlin/New York, 1976)
    60. T. Vo, R. Bertram, J. Tabak, M. Wechselberger, Mixed-mode oscillations as a mechanism for pseudo-plateau bursting. J. Comp. Neurosci. 28, 443-58 (2010) CrossRef
    61. M. Wechselberger, Existence and bifurcation of canards in ${\mathbb{R}}^{3}$ in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101-39 (2005) CrossRef
    62. M. Wechselberger, Canards. Scholarpedia 2(4), 1356 (2007) CrossRef
    63. M. Wechselberger, à propos de canards (Apropos canards). Trans. Am. Math. Soc. 364, 3289-309 (2012) CrossRef
    64. S. Wieczorek, P. Ashwin, C. Luke, P. Cox, Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A 467, 1243-269 (2011) CrossRef
    65. W. Zhang, V. Kirk, J. Sneyd, M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales. J. Math. Neurosci. 1, 9 (2011) CrossRef
  • 作者单位:Martin Wechselberger (4)
    John Mitry (4)
    John Rinzel (5)

    4. School of Mathematics and Statistics, University of Sydney, Sydney, Australia
    5. Courant Institute, New York University, New York, USA
  • ISSN:1617-9692
文摘
An important feature of many physiological systems is that they evolve on multiple scales. From a mathematical point of view, these systems are modeled as singular perturbation problems. It is the interplay of the dynamics on different temporal and spatial scales that creates complicated patterns and rhythms. Many important physiological functions are linked to time-dependent changes in the forcing which leads to nonautonomous behaviour of the cells under consideration. Transient dynamics observed in models of excitability are a prime example.Recent developments in canard theory have provided a new direction for understanding these transient dynamics. The key observation is that canards are still well defined in nonautonomous multiple scales dynamical systems, while equilibria of an autonomous system do, in general, not persist in the corresponding driven, nonautonomous system. Thus canards have the potential to significantly shape the nature of solutions in nonautonomous multiple scales systems. In the context of neuronal excitability, we identify canards of folded saddle type as firing threshold manifolds. It is remarkable that dynamic information such as the temporal evolution of an external drive is encoded in the location of an invariant manifold—the canard.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700