Planar Canards with Transcritical Intersections
详细信息    查看全文
  • 作者:P. De Maesschalck
  • 关键词:Slow ; fast systems ; Slow divergence integral ; Canards ; Singular perturbations ; Transcritical intersection
  • 刊名:Acta Applicandae Mathematicae
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:137
  • 期:1
  • 页码:159-184
  • 全文大小:1,374 KB
  • 参考文献:1.Benoit, E.: 脡quations diff茅rentielles: relation entr茅e鈥搒ortie. C. R. Acad. Sci. Paris S茅r. I Math. 293(5), 293鈥?96 (1981)MATH MathSciNet
    2.Beno卯t, 脡., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. I鈥揑V. Collect. Math. 32(1鈥?), 37鈥?19 (1981)MATH MathSciNet
    3.Canalis-Durand, M.: Formal expansion of van der Pol equation canard solutions are Gevrey. In: Dynamic Bifurcations (Luminy, 1990). Lecture Notes in Math., vol.聽1493, pp.聽29鈥?9. Springer, Berlin (1991)View Article
    4.Canalis-Durand, M., Ramis, J.P., Sch盲fke, R., Sibuya, Y.: Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math. 518, 95鈥?29 (2000)MATH MathSciNet
    5.De Maesschalck, P.: Gevrey properties of real planar singularly perturbed systems. J. Differ. Equ. 238(2), 338鈥?65 (2007)View Article MATH
    6.De Maesschalck, P., Desroches, M.: Numerical continuation techniques for planar slow-fast systems. SIAM J. Appl. Dyn. Syst. 12(3), 1159鈥?180 (2013)View Article MATH MathSciNet
    7.De Maesschalck, P., Dumortier, F.: Time analysis and entry-exit relation near planar turning points. J. Differ. Equ. 215(2), 225鈥?67 (2005)View Article MATH
    8.De Maesschalck, P., Dumortier, F.: Canard solutions at non-generic turning points. Trans. Am. Math. Soc. 358(5), 2291鈥?334 (2006) (electronic)View Article MATH
    9.De Maesschalck, P., Dumortier, F.: Bifurcations of multiple relaxation oscillations in polynomial Li茅nard equations. Proc. Am. Math. Soc. 139(6), 2073鈥?085 (2011)View Article MATH
    10.De Maesschalck, P., Dumortier, F., Roussarie, R.: Transitory canard cycles. In preparation
    11.De Maesschalck, P., Dumortier, F., Roussarie, R.: Cyclicity of common slow-fast cycles. Indag. Math. 22(3-4), 165鈥?06 (2011)View Article MATH MathSciNet
    12.De Maesschalck, P., Huzak, R.: Slow divergence integrals in classical li茅nard equations near centers. J. Dyn. Differ. Equ. (2014), 9聽pp. http://鈥媎x.鈥媎oi.鈥媜rg/鈥?0.鈥?007/鈥媠10884-014-9358-1 . doi:10.鈥?007/鈥媠10884-014-9358-1 ,
    13.Dumortier, F.: Slow divergence integral and balanced canard solutions. Qual. Theory Dyn. Syst. 10(1), 65鈥?5 (2011)View Article MATH MathSciNet
    14.Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 121(577), x+100 (1996). With an appendix by Cheng Zhi LiMathSciNet
    15.Dumortier, F., Roussarie, R.: Bifurcation of relaxation oscillations in dimension two. Discrete Contin. Dyn. Syst. 19(4), 631鈥?74 (2007)View Article MATH MathSciNet
    16.Dumortier, F., Roussarie, R.: Birth of canard cycles. Discrete Contin. Dyn. Syst. Ser. S 2(4), 723鈥?81 (2009)View Article MATH MathSciNet
    17.Eckhaus, W.: Asymptotic Analysis of Singular Perturbations. Studies in Mathematics and Its Applications, vol.聽9. North-Holland Publishing Co., Amsterdam-New York (1979)MATH
    18.Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. In: Asymptotic Analysis, II. Lecture Notes in Math., vol.聽985, pp.聽449鈥?94. Springer, Berlin (1983)View Article
    19.Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53鈥?8 (1979)View Article MATH MathSciNet
    20.Fran莽oise, J.P., Piquet, C., Vidal, A.: Enhanced delay to bifurcation. Bull. Belg. Math. Soc. Simon Stevin 15(5), 825鈥?31 (2008). http://鈥媝rojecteuclid.鈥媜rg/鈥媏uclid.鈥媌bms/鈥?228486410 MATH MathSciNet
    21.van Gils, S., Krupa, M., Szmolyan, P.: Asymptotic expansions using blow-up. Z. Angew. Math. Phys. 56(3), 369鈥?97 (2005)View Article MATH MathSciNet
    22.Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Applied Mathematical Sciences, vol.聽63. Springer, New York (1987)MATH
    23.Huzak, R., Maesschalck, P., Dumortier, F.: Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Commun. Pure Appl. Anal. 13(6), 2641鈥?673 (2014)View Article MATH MathSciNet
    24.Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol.聽114. Springer, New York (1996)MATH
    25.Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14(6), 1473鈥?491 (2001)View Article MATH MathSciNet
    26.Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312鈥?68 (2001)View Article MATH MathSciNet
    27.Kuznetsov, Y.A., Muratori, S., Rinaldi, S.: Homoclinic bifurcations in slow-fast second order systems. Nonlinear Anal. 25(7), 747鈥?62 (1995)View Article MATH MathSciNet
    28.Li, C., Zhu, H.: Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254(2), 879鈥?10 (2013)View Article MATH
    29.Mamouhdi, L., Roussarie, R.: Canard cycles of finite codimension with two breaking parameters. Qual. Theory Dyn. Syst. 11(1), 167鈥?98 (2012)View Article MATH MathSciNet
    30.Mishchenko, E.F., Kolesov, Y.S., Kolesov, A.Y., Rozov, N.K.: Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York (1994). Translated from the Russian by Irene AleksanovaView Article MATH
    31.Panazzolo, D.: Desingularization of nilpotent singularities in families of planar vector fields. Mem. Am. Math. Soc. 158(753), viii+108 (2002)MathSciNet
    32.Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47(895), 209鈥?23 (1963)View Article
    33.Schecter, S.: Persistent unstable equilibria and closed orbits of a singularly perturbed equation. J. Differ. Equ. 60(1), 131鈥?41 (1985)View Article MATH MathSciNet
    34.Shen, J., Han, M.: Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Li茅nard systems. Discrete Contin. Dyn. Syst. 33(7), 3085鈥?108 (2013)View Article MATH MathSciNet
    35.Verhulst, F.: Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics. Texts in Applied Mathematics, vol.聽50. Springer, New York (2005)View Article MATH
    36.Wasow, W.R.: Singular perturbation methods for nonlinear oscillations. In: Proceedings of the Symposium on Nonlinear Circuit Analysis, pp.聽75鈥?8. Polytechnic Institute of Brooklyn, New York (1953)
  • 作者单位:P. De Maesschalck (1)

    1. Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
  • 刊物主题:Mathematics, general; Computer Science, general; Theoretical, Mathematical and Computational Physics; Statistical Physics, Dynamical Systems and Complexity; Mechanics;
  • 出版者:Springer Netherlands
  • ISSN:1572-9036
文摘
We review essential techniques in the study of families of periodic orbits of slow-fast systems in the plane. The techniques are demonstrated by treating orbits passing through unfoldings of transcritical intersections of curves of singular points in the most generic setting. We show that such transcritical intersections can generate canard type orbits. The stability of limit cycles of canard type containing that pass near transcritical intersections is examined by means of the slow divergence integral.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700