A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa
详细信息    查看全文
  • 作者:Woo-Sung Kwon (43)
    Md Saidur Rahman (43)
    June-Sub Lee (43)
    Jin Kim (43)
    Sung-Jae Yoon (43)
    Yoo-Jin Park (43)
    Young-Ah You (43)
    Seongsoo Hwang (44)
    Myung-Geol Pang (43)

    43. Department of Animal Science & Technology
    ; Chung-Ang University ; Anseong ; Gyeonggi-do ; 456-756 ; Republic of Korea
    44. Animal Biotechnology Division
    ; National Institute of Animal Science ; RDA ; Suwon ; Gyeonggi-do ; 441-706 ; Republic of Korea
  • 关键词:Capacitation ; Proteomics ; Boar ; Spermatozoa ; 2DE
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,738 KB
  • 参考文献:1. Zaneveld, LJ, De Jonge, CJ, Anderson, RA, Mack, SR (1991) Human sperm capacitation and the acrosome reaction. Hum Reprod 6: pp. 1265-1274
    2. Fraser, LR, McDermott, A (1992) Ca2+-related changes in the mouse sperm capacitation state: a possible role for Ca2+-ATPase. J Reprod Fertil 96: pp. 363-377 CrossRef
    3. Luconi, M, Krausz, C, Forti, G, Baldi, E (1996) Extracellular calcium negatively modulates tyrosine phosphorylation and tyrosine kinase activity during capacitation of human spermatozoa. Biol Reprod 55: pp. 207-216 CrossRef
    4. Kirichok, Y, Navarro, B, Clapham, DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439: pp. 737-740 CrossRef
    5. Wang, D, Hu, J, Bobulescu, IA, Quill, TA, McLeroy, P, Moe, OW, Garbers, DL (2007) A sperm specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 104: pp. 9325-9330 CrossRef
    6. Arcelay, E, Salicioni, AM, Wertheimer, E, Visconti, PE (2008) Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol 52: pp. 463-472 CrossRef
    7. Kaneto, M, Krisfalusi, M, Eddy, EM, O鈥橞rien, DA, Miki, K (2008) Bicarbonate induced phosphorylation of p270 protein in mouse sperm by cAMP-dependent protein kinase. Mol Reprod Dev 75: pp. 1045-1053 CrossRef
    8. Visconti, PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106: pp. 667-668 CrossRef
    9. Kwon, WS, Park, YJ, Kim, YH, You, YA, Kim, IC, Pang, MG (2013) Vasopressin effectively suppresses male fertility. PLoS One 8: pp. e5419
    10. Kwon, WS, Park, YJ, el SA, M, Pang, MG (2013) Voltage-dependent anion channels are a key factor of male fertility. Fertil Steril 99: pp. 354-361 CrossRef
    11. Chang, MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168: pp. 697-698 CrossRef
    12. Austin, CR (1951) Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4: pp. 581-596
    13. Secciani, F, Bianchi, L, Ermini, L, Cianti, R, Armini, A, La Sala, GB, Focarelli, R, Bini, L, Rosati, F (2009) Protein profile of capacitated versus ejaculated human sperm. J Proteome Res 8: pp. 3377-3389 CrossRef
    14. Baker, MA, Reeves, G, Hetherington, L, Aitken, RJ (2010) Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC-MS/MS analysis. Proteomics 10: pp. 482-495 CrossRef
    15. Kota, V, Dhople, VM, Shivaji, S (2009) Tyrosine phosphoproteome of hamster spermatozoa: role of glycerol-3-phosphate dehydrogenase 2 in sperm capacitation. Proteomics 9: pp. 1809-1826 CrossRef
    16. Flesch, FM, Colenbrander, B, van Golde, LM, Gadella, BM (1999) Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun 7: pp. 787-792 CrossRef
    17. Jagan Mohanarao, G, Atreja, SK (2011) Identification of capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) and cattle spermatozoa. Anim Reprod Sci 123: pp. 40-47 CrossRef
    18. Miller, D, Ostermeier, GC (2006) Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update 12: pp. 757-767 CrossRef
    19. Gur, Y, Breitbart, H (2008) Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol Cell Endocrinol 282: pp. 45-55 CrossRef
    20. Wang, S, Wang, W, Xu, Y, Tang, M, Fang, J, Sun, H, Sun, Y, Gu, M, Liu, Z, Zhang, Z, Lin, F, Wu, T, Song, N, Wang, Z, Zhang, W, Yin, C (2014) Proteomic characteristics of human sperm cryopreservation. Proteomics 14: pp. 298-310 CrossRef
    21. Yuan, J (2014) Protein degradation and phosphorylation after freeze thawing result in spermatozoon dysfunction. Proteomics 14: pp. 155-156 CrossRef
    22. Bonde, JP, Ernst, E, Jensen, TK, Hjollund, NH, Kolstad, H, Henriksen, TB, Scheike, T, Giwercman, A, Olsen, J, Skakkebaek, NE (1998) Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352: pp. 1172-1177 CrossRef
    23. Morrell, JM, Johannisson, A, Dalin, AM, Hammar, L, Sandebert, T, Rodriguez-Martinezet, H (2008) Sperm morphology and chromatin integrity in Swedish warmblood stallions and their relationship to pregnancy rates. Acta Vet Scand 50: pp. 1-7 CrossRef
    24. Kastelic, JP, Thundathil, JC (2008) Breeding soundness evaluation and semen analysis for predicting bull fertility. Reprod Domest Anim 43: pp. 368-373 CrossRef
    25. Budworth, PR, Amann, RP, Chapman, PL (1988) Relationships between computerized measurements of motion of frozen-thawed bull spermatozoa and fertility. J Androl 9: pp. 41-54
    26. Jasko, DJ, Lein, DH, Foote, RH (1990) Determination of the relationship between sperm morphologic classifications and fertility in stallions: 66 cases (1987-1988). J Am Vet Med Assoc 197: pp. 389-394
    27. S谩nchez-Partida, LG, Windsor, DP, Eppleston, J, Setchell, BP, Maxwell, WM (1999) Fertility and its relationship to motility characteristics of spermatozoa in ewes after cervical, transcervical, and intrauterine insemination with frozen-thawed ram semen. J Androl 20: pp. 280-288
    28. Oh, SA, Park, YJ, You, YA, Mohamed, EA, Pang, MG (2010) Capacitation status of stored boar spermatozoa is related to litter size of sows. Anim Reprod Sci 121: pp. 131-138 CrossRef
    29. Oh, SA, You, YA, Park, YJ, Pang, MG (2010) The sperm penetration assay predicts the litter size in pigs. Int J Androl 33: pp. 604-612
    30. Lewis, SE (2007) Is sperm evaluation useful in predicting human fertility?. Reproduction 34: pp. 31-40 CrossRef
    31. Park, YJ, Kwon, WS, Oh, SA, Pang, MG (2012) Fertility-related proteomic profiling bull spermatozoa separated by percoll. J Proteome Res 11: pp. 4162-4168 CrossRef
    32. Peddinti, D, Nanduri, B, Kaya, A, Feugang, JM, Burgess, SC, Memili, E (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol 2: pp. 19 CrossRef
    33. Oliva, R, de Mateo, S, Estanyol, JM (2009) Sperm cell proteomics. Proteomics 9: pp. 1004-1017 CrossRef
    34. Aitken, RJ, Baker, MA (2008) The role of proteomics in understanding sperm cell biology. Int J Androl 31: pp. 295-302 CrossRef
    35. Gur, Y, Breitbart, H (2006) Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev 15: pp. 411-416 CrossRef
    36. Mountjoy, JR, Xu, W, McLeod, D, Hyndman, D, Oko, R (2008) RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol Reprod 79: pp. 223-232 CrossRef
    37. Pereira-Leal, JB, Seabra, MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313: pp. 889-901 CrossRef
    38. Stenmark, H, Olkkonen, VM (2001) The Rab GTPase family. Genome Biol 2: pp. 3007.1-3007.7 CrossRef
    39. Wu, L, Sampson, NS (2014) Fucose, mannose, and 尾-N-acetylglucosamine glycopolymers initiate the mouse sperm acrosome reaction through convergent signaling pathways. ACS Chem Biol 9: pp. 468-475 CrossRef
    40. Rahman, MS, Lee, JS, Kwon, WS, Pang, MG (2013) Sperm proteomics: road to male fertility and contraception. Int J Endocrinol 2013: pp. 360986 CrossRef
    41. Ursini, F, Heim, S, Kiess, M, Maiorino, M, Roveri, A, Wissing, J, Floh茅, L (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: pp. 1393-1396 CrossRef
    42. Maiorino, M, Roveri, A, Benazzi, L, Bosello, V, Mauri, P, Toppo, S, Tosatto, SC, Ursini, F (2005) Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. J Biol Chem 280: pp. 38395-38402 CrossRef
    43. Foresta, C, Floh茅, L, Garolla, A, Roveri, A, Ursini, F, Maiorino, M (2002) Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol Reprod 67: pp. 967-971 CrossRef
    44. Young, JC, Gould, JA, Kola, I, Iannello, RC (1998) Review: pdha-2, past and present. J Exp Zool 282: pp. 231-238 CrossRef
    45. Jilka, JM, Rahmatulla, M, Roche, TE (1986) Properties of a newly characterized protein of the bovine kidney pyruvate dehydrogenase complex. J Biol Chem 261: pp. 1858-1867
    46. Yeaman, SJ, Hutcheson, ET, Roche, TE, Pettit, FH, Brown, JR, Reed, LJ (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17: pp. 2364-2370 CrossRef
    47. Ficarro, S, Chertihin, O, Westbrook, VA, White, F, Jayes, F, Kalab, P, Marto, JA, Shabanowitz, J, Herr, JC, Hunt, DF, Visconti, PE (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278: pp. 11579-11589 CrossRef
    48. Fujinoki, M, Kawamura, T, Toda, T, Ohtake, H, Ishimoda-Takagi, T, Shimizu, N, Yamaoka, S, Okuno, M (2004) Identification of 36 kDa phosphoprotein in fibrous sheath of hamster spermatozoa. Comp Biochem Physiol B Biochem Mol Biol 137: pp. 509-520 CrossRef
    49. Wang, X, Phelan, SA, Forsman-Semb, K, Taylor, EF, Petros, C, Brown, A, Lerner, CP, Paigen, B (2003) Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem 278: pp. 25179-25190 CrossRef
    50. Rhee, SG, Chae, HZ, Kim, K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: pp. 1543-1552 CrossRef
    51. O鈥橣laherty, C, de Souza, AR (2011) Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod 84: pp. 238-247 CrossRef
    52. van Gestel, RA, Brewis, IA, Ashton, PR, Brouwers, JF, Gadella, BM (2007) Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod 13: pp. 445-454 CrossRef
    53. Ehrenwald, E, Foote, RH, Parks, JE (1990) Bovine oviductal fluid components and their potential role in sperm cholesterol efflux. Mol Reprod Dev 25: pp. 195-204 CrossRef
    54. Leijonhufvud, P, Akerlof, E, Pousette, A (1997) Structure of sperm activating protein. Mol Hum Reprod 3: pp. 249-253 CrossRef
    55. Travis, AJ, Kopf, GS (2002) The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest 110: pp. 731-736 CrossRef
    56. Th茅rien, I, Soubeyrand, S, Manjunath, P (1997) Major proteins of bovine seminal plasma modulate sperm capacitation by high-density lipoprotein. Biol Reprod 57: pp. 1080-1088 CrossRef
    57. Park, YJ, Kim, J, You, YA, Pang, MG (2013) Proteomic revolution to improve tools for evaluating male fertility in animals. J Proteome Res 12: pp. 4738-4747 CrossRef
    58. Fraser, LR, Quinn, PJ (1981) A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse. J Reprod Fertil 61: pp. 25-35 CrossRef
    59. Vilagran, I, Castillo, J, Bonet, S, Sancho, S, Yeste, M, Estanyol, JM, Oliva, R (2013) Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology 80: pp. 443-450 CrossRef
    60. Fujita, A, Nakamura, K, Kato, T, Watanabe, N, Ishizaki, T, Kimura, K, Mizoguchi, A, Narumiya, S (2000) Ropporin, a sperm-specific binding protein of rhophilin, that is localized in the fibrous sheath of sperm flagella. J Cell Sci 113: pp. 103-112
    61. Chen, J, Wang, Y, Wei, B, Lai, Y, Yan, Q, Gui, Y, Cai, Z (2011) Functional expression of ropporin in human testis and ejaculated spermatozoa. J Androl 32: pp. 26-32 CrossRef
    62. Ruiz-Pesini, E, Diez, C, Lape帽a, AC, P茅rez-Martos, A, Montoya, J, Alvarez, E, L贸pez-P茅rez, MJ (1998) Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem 44: pp. 1616-1620
    63. Rodr铆guez-Martinez, H, Iborra, A, Mart铆nez, P, Calvete, JJ (1998) Immuno-electronmicroscopic imaging of spermadhesin AWN epitopes on boar spermatozoa bound in vivo to the zona pellucida. Reprod Fertil Dev 10: pp. 491-497 CrossRef
    64. Gonz谩lez-Cadavid, V, Martins, JA, Moreno, FB, Andrade, TS, Santos, AC, Monteiro-Moreira, AC, Moreira, RA, Moura, AA (2014) Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 82: pp. 697-707 CrossRef
    65. Dost脿lov脿, Z, Calvete, JJ, Sanz, L, T枚pfer-Petersen, E (1994) Quantitation of boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa. Biochim Biophys Acta 1200: pp. 48-54 CrossRef
    66. Eisenbach, M (1999) Sperm chemotaxis. Rev Reprod 4: pp. 56-66 CrossRef
    67. el Mohamed, SA, Park, YJ, Song, WH, Shin, DH, You, YA, Ryu, BY, Pang, MG (2011) Xenoestrogenic compounds promote capacitation and an acrosome reaction in porcine sperm. Theriogenology 75: pp. 1161-1169 CrossRef
    68. Rahman, MS, Kwon, WS, Lee, JS, Kim, J, Yoon, SJ, Park, YJ, You, YA, Hwang, S, Pang, MG (2014) Sodium nitroprusside suppresses male fertility in vitro. Andrology.
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Mammalian spermatozoa must undergo capacitation, before becoming competent for fertilization. Despite its importance, the fundamental molecular mechanisms of capacitation are poorly understood. Therefore, in this study, we applied a proteomic approach for identifying capacitation-related proteins in boar spermatozoa in order to elucidate the events more precisely. 2-DE gels were generated from spermatozoa samples in before- and after-capacitation. To validate the 2-DE results, Western blotting and immunocytochemistry were performed with 2 commercially available antibodies. Additionally, the protein-related signaling pathways among identified proteins were detected using Pathway Studio 9.0. Result We identified Ras-related protein Rab-2, Phospholipid hydroperoxide glutathione peroxidase (PHGPx) and Mitochondrial pyruvate dehydrogenase E1 component subunit beta (PDHB) that were enriched before-capacitation, and NADH dehydrogenase 1 beta subcomplex 6, Mitochondrial peroxiredoxin-5, (PRDX5), Apolipoprotein A-I (APOA1), Mitochondrial Succinyl-CoA ligase [ADP-forming] subunit beta (SUCLA2), Acrosin-binding protein, Ropporin-1A, and Spermadhesin AWN that were enriched after-capacitation (>3-fold) by 2-DE and ESI-MS/MS. SUCLA2 and PDHB are involved in the tricarboxylic acid cycle, whereas PHGPx and PRDX5 are involved in glutathione metabolism. SUCLA2, APOA1 and PDHB mediate adipocytokine signaling and insulin action. The differentially expressed proteins following capacitation are putatively related to sperm functions, such as ROS and energy metabolism, motility, hyperactivation, the acrosome reaction, and sperm-egg interaction. Conclusion The results from this study elucidate the proteins involved in capacitation, which may aid in the design of biomarkers that can be used to predict boar sperm quality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700