Restricted Hausdorff Content, Frostman’s Lemma and Choquet Integrals
详细信息    查看全文
  • 作者:Safari Mukeru
  • 关键词:Hausdorff dimension ; Hausdorff content ; Frostman lemma ; Borel measure ; Capacity ; Choquet integral ; 28A78 ; 28A12 ; 31C15
  • 刊名:Bulletin of the Malaysian Mathematical Sciences Society
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:38
  • 期:3
  • 页码:885-895
  • 全文大小:432 KB
  • 参考文献:1.Adams, D.R.: Choquet integrals in potential theory. Publ. Mat. 42(1), 3-6 (1998)CrossRef MATH MathSciNet
    2.Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)CrossRef MATH
    3.Falconer, K.: Fractal Geometry. Wiley, Chichester (1990)MATH
    4.Ford Jr, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399-04 (1956)CrossRef MATH MathSciNet
    5.Fremlin, D.H.: Measure Theory, vol. 4. Torres Fremlin, Colchester (2006)MATH
    6.Frostman, O.: Potentiel d’équilibre et capacité des ensembles. Ph.D thesis, Lund (1935)
    7.Howroyd, J.D.: On dimension and on the existence of sets of finite positive Hausdorff measure. Proc. Lond. Math. Soc. (3) 70(3), 581-04 (1995)CrossRef MATH MathSciNet
    8.Kahane, J.-P.: Some Random Series of Functions. Cambridge studies in advanced mathematics, vol. 5, 2nd edn. Cambridge Univ. Press, Cambridge (1985)MATH
    9.Kaufman, R.: Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Sér. A–B 268, A727–A728 (1969)
    10.Khoshnevisan, D., Xiao, Y.: Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33(3), 841-78 (2005)CrossRef MATH MathSciNet
    11.Khoshnevisan, D., Wu, D., Xiao, Y.: Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11(32), 817-43 (2006)MathSciNet
    12.Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge Univ. Press, Cambridge (1995)CrossRef
    13.McKean Jr, H.P.: Hausdorff–Besicovitch dimension of Brownian motion paths. Duke Math. J. 22, 229-34 (1955)CrossRef MATH MathSciNet
    14.Molchanov, I.: Theory of Random Sets, Probability and its Applications (New York). Springer, London (2005)
    15.M?rters, P., Peres, Y.: Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge (2010)
    16.Rogers, C.A.: Hausdorff Measures. Cambridge Univ. Press, London (1970)MATH
    17.Shieh, N.-R., Xiao, Y.: Images of Gaussian random fields: Salem sets and interior points. Studia Math. 176(1), 37-0 (2006)CrossRef MATH MathSciNet
    18.Zindulka, O.: Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps. Fund. Math. 218(2), 95-19 (2012)CrossRef MATH MathSciNet
    19.Zindulka, O.: Small opaque sets. Real Anal. Exch. 28(2), 455-69 (2002/03)
  • 作者单位:Safari Mukeru (1)

    1. Department of Decision Sciences, University of South Africa, P. O. Box 392, Pretoria, 0003, South Africa
  • 刊物类别:Mathematics, general; Applications of Mathematics;
  • 刊物主题:Mathematics, general; Applications of Mathematics;
  • 出版者:Springer Singapore
  • ISSN:2180-4206
文摘
In this paper, we extend the well-known Frostman lemma by showing that for any subset \(E\) of \([0, 1]\) and \(\alpha >0\), if the \(\alpha \)-Hausdorff measure of \(E\) is positive, then there exist a non-zero Borel measure \(\mu \) on \([0, 1]\), a constant \(C>0\) and a subset \(E_0\) of \(E\) such that \(\mu (I) \le C \vert I \vert ^{\alpha }\) for any interval \(I\) and \(E_0\) is dense in the support of \(\mu \). Under an additional condition on \(E_0\), we show that \(\mu (B) = \mu [0, 1]\) for any Borel subset \(B\) containing \(E\). Using the notion of Choquet integral, we extend the notion of capacitarian dimension to arbitrary subset of \([0, 1]\) and prove a generalisation of Frostman’s theorem. Keywords Hausdorff dimension Hausdorff content Frostman lemma Borel measure Capacity Choquet integral

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700