Combining molecular dynamics and lattice Boltzmann simulations: a hierarchical computational protocol for microfluidics
详细信息    查看全文
  • 作者:Aline O. Pereira ; Lucas S. Lara ; Caetano R. Miranda
  • 关键词:Hierarchical computational protocol ; Lattice Boltzmann method ; Molecular dynamics ; Interfacial tension ; Wettability ; Fluid displacement
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 全文大小:2,134 KB
  • 参考文献:Alejandre J, Chapela GA, Bresme F, Hansen JP (2009) The short range anion-H interaction is the driving force for crystal formation of ions in water. J Chem Phys 130:174505-1-10
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393CrossRef
    Amott E (1956) Observations relating to the wettability of porous rock. Trans AIME 216:156–162
    Benjamin I (1997) Molecular structure and dynamics at liquid-liquid interfaces. Ann Rev Phys Chem 48:407–451CrossRef
    Berthelot D (1898) Compte rendus hebdomadaires des seances de lacademie des sciences. Acad des Sci Bachelier Paris 126:1703–1706
    Biben T, Joly L (2008) Wetting on nanorough surfaces. Phys Rev Lett 100:186103-1–4
    Blunt M, King MJ (1992) Simulation and theory of two-phase flow in porous media. Phys Rev A 46:7680CrossRef
    Bonn PD, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739–805CrossRef
    Boukellal H, Selimović S, Jia Y, Cristobalb G, Fraden S (2009) Simple, robust storage of drops and fluids in a microfluidic device. Lab Chip 9:331–338CrossRef
    Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, LondonCrossRef
    Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comp Chem 30:1545–1615CrossRef
    Buckley JS, Fan T (2007) Crude oil/brine interfacial tensions. Petrophysics 48:175–185
    Buckley JS (1991) Multiphase displacements in micromodels. In: Interfacial phenomena in petroleum recovery. Marcel Dekker Inc, New York, pp 157–189
    Chandler D (2007) Physical chemistry: oil on troubled waters. Nature 445:831–832CrossRef
    Chapmana EM, Yanga J, Crawshawa JP, Boek ES (2013) Pore scale models for imbibition of \(\text{ CO }_{2}\) analogue fluids in etched micro-fluidic junctions from micro-model experiments and direct LBM flow calculations. Energy Procedia 37:3680–3686CrossRef
    Chattoraj DK, Birdi KS (1984) Adsorption and the Gibbs surface excess. Plenum Publishing Company, New YorkCrossRef
    Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364CrossRef MathSciNet
    Chu EC, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110:21497–21508CrossRef
    Coon ET, Porter ML, Kang Q (2014) Taxila LBM: a parallel, modular lattice Boltzmann framework for simulating pore-scale flow in porous media. Comput Geosci 18:17–27. https://​software.​lanl.​gov/​taxila
    Cygan RT, Liang JJ, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266CrossRef
    de Lara LS, Michelon MF, Miranda CR (2012a) Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes. J Phys Chem B 116:14667–14676CrossRef
    de Lara LS, Michelon MF, Metin CO, Nguyen QP, Miranda CR (2012b) Interface tension of silica hydroxylated nanoparticle with brine: a combined experimental and molecular dynamics study. J Chem Phys 136:164702-1-8
    de Serio M, Mohapatra H, Zenobi R, Deckert V (2006) Investigation of the liquid–liquid interface with high spatial resolution using near-field Raman spectroscopy. Chem Phys Lett 417:452–456CrossRef
    Du Q, Freysz E, Shen YR (1994) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264:826–828CrossRef
    Dullien FAL (1992) Fluid transport and pore structure. Academic Press, San Diego
    Evans DJ, Morriss GP (1990) Statistical Mechanics of Non Equilibrium Liquids. Academic Press, London 1990, Theoretical Chemistry Monograph Series
    Gavryushov S (2007) Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono- and multivalent electrolyte Solutions: foundations of the \(\epsilon\) -modified Poisson-Boltzmann theory. J Phys Chem B 111:5264–5276CrossRef
    Ghoufi A, Goujon F, Lachet V, Malfreyt P (2008) Surface tension of water and acid gases from Monte Carlo simulations. J Chem Phys 128:154716–154731CrossRef
    Green MS (1954) Markoff random processes and the statistical mechanics of time-dependent phenomena. J Chem Phys 22:398–413CrossRef MathSciNet
    He X, Zou Q, Luo LS, Dembo M (1997) Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J Stat Phys 87:115–136CrossRef MathSciNet MATH
    Hockney E (1989) Computer simulation using particles. Adam Hilger, New York
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRef
    Hore DK, Walker DS, Richmond GL (2008) Water at hydrophobic surfaces: when weaker is better. J Am Chem Soc 130:1800–1801CrossRef
    Jang SS, Lin ST, Maiti PK, Blanco M, Goddard WAJ, Shuler P, Tang Y (2004) Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate. J Phys Chem B 108:12130–12140CrossRef
    Jungwirth P, Finlayson-Pitts BJ, Tobias D (2006) Introduction: structure and chemistry at aqueous interfaces. J Chem Rev 106:1137–1139CrossRef
    Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27:257–292CrossRef
    Kubo R (1957) Statistical-mechanical theory of irreversible processes. J Phys Soc Jpn 12:570–586CrossRef MathSciNet
    Kunieda M, Nakaoka K, Liang Y, Miranda CR, Ueda A, Takahashi S, Okabe H, Matsuoka T (2010) Self-accumulation of aromatics at the oil-water interface through weak hydrogen bonding. J Am Chem Soc 132:18281–18286CrossRef
    Lambert J, Hergenröder R, Suter D, Deckert V (2009) Probing liquidliquid interfaces with spatially resolved NMR spectroscopy. Angew Chem Int Ed 48:6343–6345CrossRef
    Lenormand R, Zarcone C, Sarr A (1983) Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J Fluid Mech 135:337–353CrossRef
    Li Y, Xu J, Li D (2010) Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid 9:1011–1031CrossRef
    Lorentz HA (1881) Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann der Phys 248:127–136CrossRef
    Makimura D, Metin C, Kabashima T, Matsuoka T, Nguyen QP, Miranda CR (2010) Combined modeling and experimental studies of hydroxylated silica nanoparticles. J Mater Sci 45:5084–5088CrossRef
    McElfresh PM, Wood M, Ector D (2012) Stabilizing nano particle dispersions in high salinity, high temperature downhole environments. SPE 154758-MS
    Metin CO, Rankin KM, Nguyen QP (2014) Phase behavior and rheological characterization of silica nanoparticle gel. Appl Nanosci 4:93–101CrossRef
    Michael D, Benjamin I (1995) Solute orientational dynamics and surface roughness of water/hydrocarbon interfaces. J Phys Chem 99:1530–1536CrossRef
    Miranda CR, de Lara LS, Tonetto BC (2012) Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications. SPE 157033-MS
    Mitrinovic DM, Tikhonov AM, Li M, Huang ZQ, Schlossman ML (2000) Noncapillary-wave structure at the water-alkane interface. Phys Rev Lett 85(3):582–585CrossRef
    Murray DK (2010) Differentiating and characterizing geminal silanols in silicas by \(^29\) Si NMR spectroscopy. J Colloid Interface Sci 352:163–170CrossRef
    Navrotsky A (2003) Zeolites: ordered, disordered, collapsed. Nat Mater 2:571–572CrossRef
    Nomoto T, Onishi H (2007) Fourth-order coherent raman spectroscopy in a time domain: applications to buried interfaces. PCCP 9:5515–5521CrossRef
    Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRef
    Petersen KS, Christensen PL (2007) Phase behavior of petroleum reservoir fluids. CRC, Boca Raton
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1-19. http://​lammps.​sandia.​gov
    Porter ML, Coon ET, Kang Q, Moulton JD, Carey JW (2012) Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Phys Rev E 86:036701-1–036701-8CrossRef
    Rigo VA, de Lara LS, Miranda CR (2014) Energetics of formation and hydration of functionalized silica nanoparticles: an atomistic computational study. App Surf Sci 292:742–749CrossRef
    Scatena LF, Brown MG, Richmond GL (2001) Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292:908–912CrossRef
    Sondjaja HR, Hatton TA, Tam KC (2008) Self-assembly of poly(ethylene oxide)-block-poly(acrylic acid) induced by \(\text{ CaCl }_{2}\) : mechanistic study. Langmuir 24:8501–8506CrossRef
    Song J, Choi M (2002) Stability of elongated and compact types of structures in \(\text{ SiO }_{2}\) nanoparticles. Phys Rev B 65:241302-1–241302-4
    Succi S (2001) The lattice Boltzmann equation. Oxford University Press, OxfordMATH
    Sukop MC, Thorne DT Jr (2006) Lattice Boltzmann modeling. Springer, Delft
    Talu O, Myers AL (2001) Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment. AIChE J 47:1160–1168CrossRef
    Tchelepi HA, Orr FM Jr, Rakotomalala N, Salin D, Woumeni R (1993) Dispersion, permeability heterogeneity and viscous fingering: acoustic experimental observations and particle tracking simulations. Phys Fluids 5:1558–1574CrossRef
    Thompson AP, Plimpton SJ, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 131:154107–154112CrossRef
    Ushikubo FY, Birribilli FS, Oliveira DRB, Cunha RL (2014) Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions. Microfluid Nanofluid 17:711–720CrossRef
    Varnik F, Baschnagel J, Binder K (2000) Molecular dynamics results on the pressure tensor of polymer films. J Chem Phys 113:4444–4453CrossRef
    Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159CrossRef
    Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, BerlinCrossRef MATH
    Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886CrossRef
    Zhang L, Zhang Z, Wang P (2012) Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Mater 4:e8CrossRef
    Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28CrossRef MATH
    Zhang T, Davidson A, Bryant SL, Huh C (2010) Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. SPE 129885-MS
    Zhang Y, Feller SE, Brooks BR, Pastor RW (1995) Computer simulation of liquid/liquid interfaces. I. theory and application to octane/water. J Chem Phys 103:10252–10266CrossRef
  • 作者单位:Aline O. Pereira (1)
    Lucas S. Lara (1) (3)
    Caetano R. Miranda (1) (2)

    1. Nanopetro, Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, 09210-580, Brazil
    3. Departamento de Física, Universidade Estadual de Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748, Ponta Grossa, 84030-900, Brazil
    2. Department of Mechanics and Materials Physics, Institute of Physics, University of São Paulo (USP), Rua do Matão, Travessa R, Nr 187, Cidade Universitária, São Paulo, 05508-090, Brazil
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
A hierarchical computational protocol is introduced to investigate the role of interfacial and wetting properties to the fluid displacement in hydrophilic pore network models (PNMs). Based on the combination of molecular dynamics (MD) and lattice Boltzmann method (LBM) simulations at both nano- and microscales, we study the role of dispersed functionalized \(\hbox {SiO}_{2}\) nanoparticles (NP) in brine to the oil displacement process in a clay (montmorillonite—MMT) pore structure. Our MD calculations indicate that dispersion of NP, with different hydrophilic properties, in brine solution reduces the interfacial tension between oil and brine, followed by an increase in the contact angle. The lowest interfacial tension and highest contact angle are for the hydrophilic NP functionalized with polyethylene glycol groups. By mapping the properties obtained from MD into LBM simulation parameters, we explore the oil displacement process in hydrophilic PNMs at the microscale. For all systems, the Young–Laplace filling rules are obeyed and, due to the finger formation, the displacement efficiency decreases as the capillary number increases. It was observed that, with the inclusion of NP, a reduction in interfacial tension associated with an increase in the contact angle may enhance the oil displacement process in hydrophilic pore systems at the microscale. The proposed computational protocol can be a versatile tool to explore the potentialities of chemical additives, such as NP, for the oil recovery process and investigate the effects of interfacial tension and wetting properties on the fluid behavior at both nano- and microscales. Keywords Hierarchical computational protocol Lattice Boltzmann method Molecular dynamics Interfacial tension Wettability Fluid displacement

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700