Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering
详细信息    查看全文
  • 作者:Promita Bhattacharjee ; Banani Kundu ; Deboki Naskar ; Hae-Won Kim…
  • 关键词:Non ; mulberry silk fibroin ; Poly (Є ; caprolactone) ; Nanofibers ; Bone tissue engineering
  • 刊名:Cell and Tissue Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:363
  • 期:2
  • 页码:525-540
  • 全文大小:13,951 KB
  • 参考文献:Altankov G, Groth TH (1994) Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci Mater Med 5:732–737
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Silk-based biomaterials. Biomaterials 24:401–416CrossRef PubMed
    Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2:790–832CrossRef
    Bancroft GN, Sikavitsas VI, van der Dolder J, Sheffield TL, Ambrose CG, Jansen JA et al (2002) Fluid flow increases mineralized matrix deposition in 3 D perfusion culture of marrow stromal osteoblasts in a dose dependent manner. Proc Natl Acad Sci USA 99:12600–12605CrossRef PubMedCentral PubMed
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef PubMed
    Bhattarai N, Li ZS, Gunn J, Leung M, Cooper A, Edmondson D et al (2009) Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater 21:2792–2795CrossRef
    Boudriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning approaches toward scaffold engineering - a brief overview. Artif Organs 30:785–792CrossRef PubMed
    Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487CrossRef PubMed
    Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(Є-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899–2906CrossRef PubMed
    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330CrossRef PubMed
    Datta A, Ghosh AK, Kundu SC (2001) Differential expression of the fibroin gene in developmental stages of silkworm, Antheraea mylitta (Saturniidae). Comp Biochem Physiol B 129:197–204CrossRef PubMed
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387CrossRef PubMed
    Freddi G, Armato U (2014) Silk fibroin microfiber and nanofiber scaffolds for tissue engineering and regeneration. In: Kundu SC (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead, Cambridge, pp 157–190
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(Є-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539CrossRef PubMed
    Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R et al (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–403CrossRef PubMed
    Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin redbased assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84CrossRef PubMed
    Gunatillake PA, Adhikari R (2003) Biodegradable Synthetic Polymers For Tissue Engineering. Eur Cell Mater 5:1–16PubMed
    Hsu YM, Chen CN, Chiu JJ, Chang SH, Wang YJ (2009) The effects of fiber size on MG63 cells cultured with collagen based matrices. J Biomed Mater Res B Appl Biomater 91:737–745CrossRef PubMed
    Ige OO, Umoru LE, Aribo S (2012) Natural products: A minefield of biomaterials. ISRN Mater Sci Article ID 983062
    Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z et al (2013) Incorporation of stromal cell-derived factor-1a in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34:735–745CrossRef PubMed
    Jin HJ, Park J, Karageorgiou V, Kim UJ, Valluzzi R, Cebe P et al (2005) Water- stable silk-films with reduced β-sheet content. Adv Funct Mater 15:1241–1247CrossRef
    Kim SS, Park MS, Jeon O, Choi CY, Kim BS (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409CrossRef PubMed
    Kuchaiyaphum P, Punyodom W, Watanesk S, Watanesk R (2013) Composition optimization of Polyvinyl alcohol/rice starch/silk fibroin-blended films for improving its eco-friendly packaging properties. J Appl Polym Sci 129:2614–2620CrossRef
    Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467CrossRef PubMed
    Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J et al (2012) Nonmulberry silk biopolymers. Biopolymers 97:455–467CrossRef PubMed
    Kundu B, Rajkhowa R, Kundu SC, Wang X (2013a) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470CrossRef PubMed
    Kundu B, Saha B, Datta K, Kundu SC (2013b) A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials 34:9462–9474CrossRef PubMed
    Kurella A, Dahotre NB (2005) Surface Modification for Bioimplants: The Role of Laser Surface Engineering. J Biomater Appl 20:5–50CrossRef PubMed
    Lee H, Kim G (2010) Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications. J Biomat Sci Polym E 21:1687–1699CrossRef
    Lee JH, Park JH, Fiqi AE, Kim JH, Yun YR, Jang JH et al (2014) Biointerface control of electrospun fiber scaffolds for bone regeneration: Engineered protein link to mineralized surface. Acta Biomater 10:2750–2761CrossRef PubMed
    Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24:357–365CrossRef PubMed
    Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166CrossRef PubMed
    Li L, Li H, Qian Y, Li X, Singh GK, Zhong L et al (2011) Electrospun poly ( Є-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49:223–232CrossRef PubMed
    Lim JS, Ki CS, Kim JW, Lee KG, Kang SW, Kweon HY et al (2011) Fabrication and evaluation of Poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Biopolymers 97:265–275CrossRef PubMed
    Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci 46:1299–1308CrossRef
    Maheshwari SU, Samuel VK, Nagiah N (2014) Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceram Int 40:8469–8477CrossRef
    Mandal BB, Kundu SC (2008a) A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 99:1482–1489CrossRef PubMed
    Mandal BB, Kundu SC (2008b) Non-bioengineered silk gland fibroin protein: Characterization and evaluation of matrices for potential tissue engineering applications. Biotechnol Bioeng 100:1237–1250CrossRef PubMed
    Mandal BB, Kundu SC (2009a) Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30:2956–2965CrossRef PubMed
    Mandal BB, Kundu SC (2009b) Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomater 5:2579–2590CrossRef PubMed
    Marra KG, Szem JW, Kumta PN, DiMilla PA (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47:324–335CrossRef PubMed
    Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71:25–34CrossRef PubMed
    Mendonca G, Mendonca DB, Simoes LG, Araujo AL, Leite ER, Duarte WR et al (2009) The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30:4053–62CrossRef PubMed
    Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30:1204–1210CrossRef
    Miller LE, Block JE (2011) Perspectives on the clinical utility of allografts for bone regeneration within osseous defects: a narrative review. Orthop Res Rev 3:31–37
    Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71:354–361CrossRef PubMed
    Naskar D, Nayak S, Dey T, Kundu SC (2014) Non-mulberry silk fibroin influence osteogenesis and osteoblast-macrophage cross talk on titanium based surface. Sci Rep 4:4745CrossRef PubMedCentral PubMed
    Patra C, Talukdar S, Novoyatleva T, Velagala SR, Mühlfeld C, Kundu B et al (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33:2673–2680CrossRef PubMed
    Rajzer I, Menaszek E, Kwiatkowski R, Planell JA, Castano O (2014) Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Mater Sci Eng C 44:183–190CrossRef
    Rohanizadeh R, Swain MV, Mason RS (2008) Gelatin sponges (Gelfoam_) as a scaffold for osteoblasts. J Mater Sci Mater Med 19:1173–1182CrossRef PubMed
    Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46:382–389CrossRef PubMed
    Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13:366–375CrossRef PubMed
    Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VRG (2013) Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl 29:46–58CrossRef PubMed
    Shi R, Xue J, He M, Chen D, Zhang L, Tian W (2014) Structure, physical properties, biocompatibility and in vitro/vivo degradation behavior of anti-infective polycaprolactone-based electrospun membranes for guided tissue/bone regeneration. Polym Degrad Stabil 109:293–306CrossRef
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148CrossRef PubMed
    Stevens MM, George JH (2005) Exploring and Engineering the Cell Surface Interface. Materials Biol 310:1135–1138
    Suganya S, Venugopal J, Mary SA, Ramakrishna S, Lakshmi BS, Dev VG (2014) Aloe vera incorporated biomimetic nanofibrous scaffold: a regenerative approach for skin tissue engineering. Iran Polym J 23:237–248CrossRef
    Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6:3100–3106CrossRef PubMed
    Tretinnikov ON, Tamada Y (2001) Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir 17:7406–7413CrossRef
    Tsukada M (1986) Effect of α-chymotrypsin on the structure of silk fibroin. J Seric Sci Jpn 55:120–126
    Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VRG et al (2013) Electrosprayed Hydroxyapatite on Polymer Nanofibers to Differentiate Mesenchymal Stem Cells to Osteogenesis. J Biomater Sci Polym Ed 24:170–184PubMed
    Verma S, Kumar N (2010) Effect of biomimetic 3D environment of an injectable polymeric scaffold on MG-63 osteoblastic-cell response. Mater Sci Eng C 30:1118–1128CrossRef
    Wang B, Cai Q, Zhang S, Yang X (2011) The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. J Mech Behav Biomed Mater 4:600–609CrossRef PubMed
    Wolfe PS, Sell SA, Bowlin GL (2011) Natural and Synthetic Scaffolds.In Tissue Engineering (pp 41-67). Springer, Berlin
    Xu C, Inai R, Kotaki M, Ramakrishna S (2004) Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 10:1160–1168CrossRef PubMed
    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005a) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589CrossRef PubMed
    Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, Huang ZM (2005b) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res 72B:156–165CrossRef
    Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of Polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3:1312–1319CrossRef PubMed
  • 作者单位:Promita Bhattacharjee (1)
    Banani Kundu (2) (3)
    Deboki Naskar (2)
    Hae-Won Kim (3)
    Debasis Bhattacharya (1)
    T. K. Maiti (2)
    S. C. Kundu (2)

    1. Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
    2. Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
    3. Institute of Tissue Regeneration Engineering (ITREN) & Department of Nanobiomedical Science BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, South Korea
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Proteomics
    Molecular Medicine
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0878
文摘
The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4 % fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk–poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering. Keywords Non-mulberry silk fibroin Poly (Є-caprolactone) Nanofibers Bone tissue engineering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700