Lithium difluoro(oxalato)borate as an additive to suppress the aluminum corrosion in lithium bis(fluorosulfony)imide-based nonaqueous carbonate electrolyte
详细信息    查看全文
  • 作者:Guochun Yan ; Xinhai Li ; Zhixing Wang ; Huajun Guo…
  • 关键词:Corrosion ; Lithium difluoro(oxalate)borate ; Lithium bis(fluorosulfony)imide ; Electrolyte
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:2
  • 页码:507-516
  • 全文大小:2,584 KB
  • 参考文献:1.Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRef
    2.Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 17:14326–14346CrossRef
    3.Walker CW, Cox JD, Salomon M (1996) Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris(trifluoromethanesulfonyl)methide. J Electrochem Soc 143:L80–L82CrossRef
    4.Xu W, Angell CA (2001) Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid State Lett 4:E1–E4CrossRef
    5.Xu K, Zhang SS, Lee U, Allen JL, Jow TR (2005) LiBOB: is it an alternative salt for lithium ion chemistry? J Power Sources 146:79–85
    6.Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428CrossRef
    7.Han HB, Zhou SS, Zhang DJ, Feng SW, Li LF, Liu K, Feng WF, Nie J, Li H, Huang XJ (2011) Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J Power Sources 196:3623–3632CrossRef
    8.Li LF, Zhou SS, Han HB, Li H, Nie J, Armand M, Zhou ZB, Huang XJ (2011) Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J Electrochem Soc 158:A74–A82CrossRef
    9.Seki S, Takei K, Miyashiro H, Watanabe M (2011) Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. J Electrochem Soc 158:A769–A774CrossRef
    10.Reiter J, Nádherná M, Dominko R (2012) Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sources 205:402–407CrossRef
    11.Eshetu GG, Grugeon S, Gachot G, Mathiron D, Armand M, Laruelle S (2013) LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochim Acta 102:133–141
    12.Philippe B, Dedryvere R, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K (2013) Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J Am Chem Soc 135:9829–9842CrossRef
    13.Evans T, Olson J, Bhat V, Lee SH (2014) Effect of organic solvent addition to PYR13FSI + LiFSI electrolytes on aluminum oxidation and rate performance of Li(Ni1/3Mn1/3Co1/3)O2 cathodes. J Power Sources 265:132–139CrossRef
    14.Abouimrane A, Ding J, Davidson IJ (2009) Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J Power Sources 189:693–696CrossRef
    15.Yang H, Kwon K, Devine TM, Evans JW (2000) Aluminum corrosion in lithium batteries: an investigation using the electrochemical quartz crystal microbalance. J Electrochem Soc 147:4399–4407CrossRef
    16.Kühnel RS, Lübke M, Winter M, Passerini S, Balducci A (2012) Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources 214:178–184CrossRef
    17.Han P, Zhang B, Huang C, Gu L, Li H, Cui G (2014) Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte. Electrochem Commun 44:70–73CrossRef
    18.Nakajima T, Mori M, Gupta V, Ohzawa Y, Iwata H (2002) Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci 4:1385–1394CrossRef
    19.Song SW, Richardson TJ, Zhuang GV, Devine TM, Evans JW (2004) Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte: a study using the EQCM. Electrochim Acta 49:1483–1490CrossRef
    20.Zhang X, Devine TM (2006) Passivation of aluminum in lithium-ion battery electrolytes with LiBOB. J Electrochem Soc 153:B365–B369CrossRef
    21.Zhang L, Chai L, Zhang L, Shen M, Zhang X, Battaglia VS (2014) Synergistic effect between lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochim Acta 127:39–44CrossRef
    22.Myung ST, Natsui H, Sun YK, Yashiro H (2010) Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. J Power Sources 195:8297–8301CrossRef
    23.Zhu Y, Li Y, Bettge M, Abraham DP (2012) Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J Electrochem Soc 159:A2109–A2117CrossRef
    24.Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M (2011) Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J Power Sources 196:9743–9750CrossRef
    25.Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267CrossRef
    26.Zhang SS, Jow TR, Amine K, Henriksen GL (2002) LiPF6–EC–EMC electrolyte for li-ion battery. J Power Sources 107:18–23CrossRef
    27.Xu F, Liu CY, Feng WF, Nie J, Li H, Huang XJ, Zhou ZB (2014) Molten salt of lithium bis(fluorosulfonyl)imide (LiFSI)-potassium bis(fluorosulfonyl)imide (KFSI) as electrolyte for the natural graphite/LiFePO4 lithium-ion cell. Electrochim Acta 135:217–223CrossRef
    28.Li J, Xie K, Lai Y, Zhang Z, Li F, Hao X, Chen Y, Liu J (2010) Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195:5344–5350
    29.Wu Q, Lu W, Miranda M, Honaker-Schroeder TK, Lakhsassi KY, Dees D (2012) Effects of lithium difluoro(oxalate)borate on the performance of Li-rich composite cathode in Li-ion battery. Electrochem Commun 24:78–81CrossRef
    30.Edström K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50:397–403
    31.Aurbach D, Weissman I, Schechter A (1996) X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions: a comparison with previous studies by fourier transform infrared spectroscopy. Langmuir 12:3991–4007CrossRef
    32.Fu MH, Huang KL, Liu SQ, Liu JS, Li YK (2010) Lithium difluoro(oxalato)borate/ethylene carbonate+propylene carbonate+ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode. J Power Sources 195:862–866CrossRef
  • 作者单位:Guochun Yan (1)
    Xinhai Li (1)
    Zhixing Wang (1)
    Huajun Guo (1)
    Wenjie Peng (1)
    Qiyang Hu (1)

    1. School of Metallurgy and Environment, Central South University, Changsha, 410083, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Lithium bis(fluorosulfony)imide (LiFSI) is a promising alternative lithium salt to replace lithium hexafluorophosphate (LiPF6) due to its high conductivity and excellent compatibility with electrode material. On the other hand, the aluminum corrosion caused by LiFSI hinders its application in lithium ion battery. To solve this problem, lithium difluoro(oxalato)borate (LiDFOB) is added to suppress the aluminum corrosion in LiFSI-based nonaqueous carbonate electrolyte. The electrochemical tests in three-electrode cells and graphite/LiCoO2 full cells confirm that the addition of LiDFOB is beneficial to suppress the aluminum corrosion. In addition, the mechanism is proposed that the oxidation products of LiDFOB form a passivating film at the aluminum surface to suppress the corrosion based on the experimental results from SEM and XPS tests. Keywords Corrosion Lithium difluoro(oxalate)borate Lithium bis(fluorosulfony)imide Electrolyte

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700