Coupling Surface Water and Groundwater Flows in a Laboratory Model Using Foam as Artificial Groundwater Material
详细信息    查看全文
  • 作者:A. Osei-Twumasi ; R. A. Falconer ; R. Ahmadian
  • 关键词:Conservative tracer ; Foam ; Groundwater ; Laboratory model ; Surface water ; Tidal dynamics
  • 刊名:Water Resources Management
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:30
  • 期:4
  • 页码:1449-1463
  • 全文大小:1,447 KB
  • 参考文献:Broda S, Larocque M, Paniconi C, Haitjema H (2012) A low-dimensional hillslope-based catchment model for layered groundwater flow. Hydrol Proc 26:2814–2826. doi:10.​1002/​hyp.​8319 CrossRef
    BS 1377 Part 5 (1990) Determination of permeability by the constant-head method. British Standards
    Bureau of Economic Geology (2005) Groundwater-surface water interactions in Texas. Bureau of Economic Geology Report. University of Texas, Austin
    Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33CrossRef
    Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Scien Total Environ. doi:10.​1016/​j.​scitotenv.​2006.​05.​009
    Butts MB, Loinaz M, Blasone RS et al. (2015) Eco-hydrological process simulations within an integrated surface water-groundwater model. http://​hdl.​handle.​net/​123456789/​1487
    Ducci D, Sellerino M (2015) Groundwater mass balance in urbanized areas estimated by a groundwater flow model based on a 3D hydrostratigraphical model: the case study of the Eastern Plain of Naples (Italy). Wat Resour Manag 29(12):4319–4333CrossRef
    Ebrahimi K (2004) Development of an integrated free surface and groundwater flow model. Ph.D. Thesis, Cardiff University
    Famiglietti, JS (2014) The global water crisis. Natur Clim Chang 4:945–948. doi:10.​1038/​nclimate2425
    Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301. doi:10.​1126/​science.​1236460 CrossRef
    Fleckenstein JH, Krause S, Hannah BF (2010) Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv Wat Res 13(11):1291–1296. doi:10.​1016/​j.​advwatres.​2010.​09.​011 CrossRef
    Fryar AE, Macko SA, Mullican WF, Romanak KD, Bennett PC (2000) Nitrate reduction during ground-water recharge, Southern High Plains, Texas. J Cont Hydrol 40:335–363. doi:10.​1016/​S0169-7722(99)00059-5 CrossRef
    Harris C, Davies MCR, Depountis N et al. (2000) Development of a miniaturized electrical imaging apparatus for monitoring contaminant plume evolution during centrifuge modelling. In: Garnier J, et al., Eds., Proceedings of the International Symposium on Physical Modelling and Testing in Environmental Geotechnics. NECER, France: 277–284
    Heller V (2011) Scale effects in physical hydraulic engineering models. J Hydraul Res 49(3):293–306. doi:10.​1080/​00221686.​2011.​578914 CrossRef
    Hughes SA (1995) Physical modelling and laboratory techniques in coastal engineering. World Scientific Publishing Co. Pte. Ltd., Singapore
    Jolly ID, Rassam DW (2009) A review of modelling of groundwater-surface water interactions in arid/semi-arid floodplains. 18th World IMACS / MODSIM Congress, Cairns, Australia 13–17 July 2009. http://​mssanz.​org.​au/​modsim09
    Lecher AL, Kessler J, Sparrow K, Fenix Kodovska FG-T, Dimova N, Murray J, Tulaczyk S, Paytan A (2015) Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnol Oceanogr 00:00. doi:10.​1002/​lno.​10118
    Li H, Boufadel MC, Weaver JW (2008) Tide-induced seawater–groundwater circulation in shallow beach aquifers. J Hydrol. doi:10.​1016/​j.​jhydrol.​2008.​01.​013
    Liu Q, Charette MA, Henderson PB, McCorkle DC, William Martin W, Dai M (2014) Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle Limnol. Oceanography 59(5):1529–1554. doi:10.​4319/​lo.​2014.​59.​5.​1529
    Mirzavand M, Ghazavi R (2015) A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Wat Resour Manag 29(4):1315–1328. doi:10.​1007/​s11269-014-0875-9 CrossRef
    Novak P (1984) Scaling factors and scale effects in modelling hydraulic structures. In: Rouse H (ed) Symposium on scale effects in modelling hydraulic structures. 0(3). Technische Akademie, Esslingen, pp 1–5
    Osei-Twumasi A (2010) Integrated modelling studies of solute transport in river basin systems. Ph.D. Thesis, Cardiff University
    Peyrard D, Sauvage S, Vervier P, Sanchez-Perez JM, Quintard M (2008) A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplain with a fully penetrating river. Hydrol Proc 22:4257–4273. doi:10.​1002/​hyp.​7035 CrossRef
    Rethati L (1983) Groundwater in civil engineering. Elsevier, Amsterdam
    Scanlon BR, Goldsmith RS (1997) Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Wat Resour Res 33(10):2239–2252. doi:10.​1029/​97wr01332 CrossRef
    Schmalz B, Springer P, Fohrer N (2008) Interactions between near-surface groundwater and surface water in a drained riparian wetland. In: Abesser C, Wagener T, Nuetzmann G (eds) Groundwater-surface water interaction: process understanding, conceptualization and modelling. IAHS, Oxford
    Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrog J 10(1):52–67. doi:10.​1007/​s10040-001-0170-8 CrossRef
    Spanoudaki K, Bockelmann-Evans B, Schaefer F et al. (2015) Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing. Geophys Res Abst 17, EGU2015-14842–1, EGU General Assembly
    Thomas B, Famiglietti J (2015) Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California. Wat Resour Manag 29(12):4411–4426. doi:10.​1007/​s11269-015-1067-y CrossRef
    Thoms MC (2003) Flood-plain river ecosystems: lateral connections and the implications of human interference. Geomorphology 56:335–349. doi:10.​1016/​S0169-555X(03)00160-0 CrossRef
    Wada Y, van Beek LPH, van Kempen CM et al. (2010) Global depletion of groundwater resources. Geophys Res Lett 37
    Winter TC, Harvey JW, Franke OL et al. (1998) Groundwater and surface water – a single resource. United States Geological Survey, Circular 1139
  • 作者单位:A. Osei-Twumasi (1)
    R. A. Falconer (2)
    R. Ahmadian (2)

    1. Civil Engineering Department, Kumasi Polytechnic, P. O. Box 854, Kumasi, Ghana
    2. Hydro-environmental Research Centre, Cardiff University, The Parade, CF24 3AA, Cardiff, UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geotechnical Engineering
    Meteorology and Climatology
    Civil Engineering
    Environment
  • 出版者:Springer Netherlands
  • ISSN:1573-1650
文摘
A laboratory mock-up of a surface water groundwater system with foam blocks used to replicate a groundwater material was mounted in a tidal basin in the Hydraulics Laboratory at Cardiff University, UK. River flow in the form of a channel was generated, with an oscillating weir at the lower boundary of the system producing tides or controlled water levels. The purpose of the experiment was to investigate the manner in which flow and a conservative tracer interacted between surface and sub-surface flows for simulated riverine and tidal conditions. In these controlled laboratory conditions, results obtained with respect to flows were consistent with the laws governing surface-subsurface flows. In contrast, the conservative tracer could not move through the foam for any meaningful results to be obtained, which was thought to be due to the dominance of surface tension and sorption in the foam pores. Keywords Conservative tracer Foam Groundwater Laboratory model Surface water Tidal dynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700