CP110 and its network of partners coordinately regulate cilia assembly
详细信息    查看全文
  • 作者:William Y Tsang (1) (2) (3)
    Brian D Dynlacht (4)
  • 关键词:Centrosomes ; Cilia ; Ciliogenesis ; CP110 ; Cep290 ; BBSome ; IFT ; Protein network
  • 刊名:Cilia
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:2
  • 期:1
  • 全文大小:333 KB
  • 参考文献:1. Brito DA, Gouveia SM, Bettencourt-Dias M: Deconstructing the centriole: structure and number control. / Curr Opin Cell Biol 2012, 24:4鈥?3. CrossRef
    2. Nigg EA, Stearns T: The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. / Nat Cell Biol 2011, 13:1154鈥?160. CrossRef
    3. Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA: Centrosomes and cilia in human disease. / Trends Genet 2011, 27:307鈥?15. CrossRef
    4. Nigg EA, Raff JW: Centrioles, centrosomes, and cilia in health and disease. / Cell 2009, 139:663鈥?78. CrossRef
    5. Kobayashi T, Dynlacht BD: Regulating the transition from centriole to basal body. / J Cell Biol 2011, 193:435鈥?44. CrossRef
    6. Jana SC, Machado P, Bettencourt-Dias M: A structural road map to unveil basal body composition and assembly. / EMBO J 2012, 31:519鈥?21. CrossRef
    7. Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S: Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. / Cell 2012, 148:189鈥?00. CrossRef
    8. Kodani A, Salome Sirerol-Piquer M, Seol A, Garcia-Verdugo JM, Reiter JF: Kif3a interacts with dynactin subunit p150 Glued to organize centriole sub-distal appendages. / EMBO J 2013, 32:597鈥?07. CrossRef
    9. Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S: The centrosome regulates the Rab11-dependent recycling endosome pathway at appendages of the mother centriole. / Curr Biol 2012, 22:1944鈥?950. CrossRef
    10. Avasthi P, Marshall WF: Stages of ciliogenesis and regulation of ciliary length. / Differentiation 2012, 83:S30-S42. CrossRef
    11. Pedersen LB, Veland IR, Schroder JM, Christensen ST: Assembly of primary cilia. / Dev Dyn 2008, 237:1993鈥?006. CrossRef
    12. Reiter JF, Blacque OE, Leroux MR: The base of the cilium: roles for transition fibers and the transition zone in ciliary formation, maintenance and compartmentalization. / EMBO Rep 2012, 13:608鈥?18. CrossRef
    13. Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK: TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. / Genes Dev 2010, 24:2180鈥?193. CrossRef
    14. Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J: The BBSome controls IFT assembly and turnaround in cilia. / Nat Cell Biol 2012, 14:950鈥?57. CrossRef
    15. Pedersen LB, Christensen ST: Regulating intraflagellar transport. / Nat Cell Biol 2012, 14:904鈥?06. CrossRef
    16. Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV: The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. / J Cell Biol 2012, 197:789鈥?00. CrossRef
    17. Ishikawa H, Marshall WF: Ciliogenesis: building the cell鈥檚 antenna. / Nat Rev Mol Cell Biol 2011, 12:222鈥?34. CrossRef
    18. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. / Nature 2003, 426:570鈥?74. CrossRef
    19. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC: A proteomic analysis of human cilia: identification of novel components. / Mol Cell Proteomics 2002, 1:451鈥?65. CrossRef
    20. Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, / et al.: Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. / Cell 2004, 117:541鈥?52. CrossRef
    21. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA: Cep164, a novel centriole appendage protein required for primary cilium formation. / J Cell Biol 2007, 179:321鈥?30. CrossRef
    22. Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG: Functional genomic screen for modulators of ciliogenesis and cilium length. / Nature 2010, 464:1048鈥?051. CrossRef
    23. Spektor A, Tsang WY, Khoo D, Dynlacht BD: Cep97 and CP110 suppress a cilia assembly program. / Cell 2007, 130:678鈥?90. CrossRef
    24. Lai Y, Chen B, Shi J, Palmer JN, Kennedy DW, Cohen NA: Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. / J Allergy Clin Immunol 2011, 128:1207鈥?215. e1201 CrossRef
    25. Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A, Malhotra V, Dynlacht BD: CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. / Dev Cell 2008, 15:187鈥?97. CrossRef
    26. Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD: CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. / Mol Biol Cell 2006, 17:3423鈥?434. CrossRef
    27. Tsang WY, Spektor A, Vijayakumar S, Bista BR, Li J, Sanchez I, Duensing S, Dynlacht BD: Cep76, a centrosomal protein that specifically restrains centriole reduplication. / Dev Cell 2009, 16:649鈥?60. CrossRef
    28. Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD: Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. / Cell 2011, 145:914鈥?25. CrossRef
    29. Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD: CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. / Dev Cell 2002, 3:339鈥?50. CrossRef
    30. Li J, Kim S, Kobayashi T, Liang FX, Korzeniewski N, Duensing S, Dynlacht BD: Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centers. / EMBO Rep 2012, 13:547鈥?53. CrossRef
    31. Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L: Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. / Mol Cell Proteomics 2012, 11:M111 014233. CrossRef
    32. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA: Plk4-induced centriole biogenesis in human cells. / Dev Cell 2007, 13:190鈥?02. CrossRef
    33. Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof YD, Nigg EA: Control of centriole length by CPAP and CP110. / Curr Biol 2009, 19:1005鈥?011. CrossRef
    34. Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM, Spektor A, Dynlacht BD, Khodjakov A, Gonczy P: Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. / Curr Biol 2009, 19:1012鈥?018. CrossRef
    35. Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK: CPAP is a cell-cycle regulated protein that controls centriole length. / Nat Cell Biol 2009, 11:825鈥?31. CrossRef
    36. Delgehyr N, Rangone H, Fu J, Mao G, Tom B, Riparbelli MG, Callaini G, Glover DM: Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. / Curr Biol 2012, 22:502鈥?09. CrossRef
    37. Li J, D鈥橝ngiolella V, Seeley ES, Kim S, Kobayashi T, Fu W, Campos EI, Pagano M, Dynlacht BD: USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. / Nature 2013, 495:255鈥?59. CrossRef
    38. D鈥橝ngiolella V, Donato V, Vijayakumar S, Saraf A, Florens L, Washburn MP, Dynlacht B, Pagano M: SCF (Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. / Nature 2010, 466:138鈥?42. CrossRef
    39. Cao J, Shen Y, Zhu L, Xu Y, Zhou Y, Wu Z, Li Y, Yan X, Zhu X: miR-129鈥?p controls cilia assembly by regulating CP110 and actin dynamics. / Nat Cell Biol 2012, 14:697鈥?06. CrossRef
    40. Goetz SC, Liem KF Jr, Anderson KV: The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. / Cell 2012, 151:847鈥?58. CrossRef
    41. Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B, Grigoriev I, Larsen J, Pedersen LB, Bezstarosti K, / et al.: A Proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. / Curr Biol 2012, 22:1800鈥?807. CrossRef
    42. Schroder JM, Larsen J, Komarova Y, Akhmanova A, Thorsteinsson RI, Grigoriev I, Manguso R, Christensen ST, Pedersen SF, Geimer S, Pedersen LB: EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. / J Cell Sci 2011, 124:2539鈥?551. CrossRef
    43. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF: Centriole distal appendages promote membrane docking, leading to cilia initiation. / Genes Dev 2013, 27:163鈥?68. CrossRef
    44. Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, Kim J: CCDC41 is required for ciliary vesicle docking to the mother centriole. / Proc Natl Acad Sci U S A 2013, 110:5987鈥?992. CrossRef
    45. Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G: Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. / J Cell Biol 2012, 199:1083鈥?101. CrossRef
    46. Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, / et al.: The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. / J Cell Biol 2013, 200:505鈥?22. CrossRef
    47. Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA: Functional dissection of Rab GTPases involved in primary cilium formation. / J Cell Biol 2007, 178:363鈥?69. CrossRef
    48. Chang J, Seo SG, Lee KH, Nagashima K, Bang JK, Kim BY, Erikson RL, Lee KW, Lee HJ, Park JE, Lee KS: Essential role of Cenexin1, but not Odf2, in ciliogenesis. / Cell Cycle 2013, 12:655鈥?62. CrossRef
    49. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA: 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. / Biol Open 2012, 1:965鈥?76. CrossRef
    50. Coppieters F, Lefever S, Leroy BP, De Baere E: CEP290, a gene with many faces: mutation overview and presentation of CEP290base. / Hum Mutat 2010, 31:1097鈥?108. CrossRef
    51. Sayer JA, Otto EA, O鈥橳oole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, / et al.: The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. / Nat Genet 2006, 38:674鈥?81. CrossRef
    52. Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, / et al.: Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. / Nat Genet 2006, 38:623鈥?25. CrossRef
    53. Kim J, Krishnaswami SR, Gleeson JG: CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. / Hum Mol Genet 2008, 17:3796鈥?805. CrossRef
    54. Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O鈥橳oole JF, Helou J, Attanasio M, / et al.: Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. / Nat Genet 2005, 37:282鈥?88. CrossRef
    55. Barbelanne M, Song J, Ahmadzai M, Tsang WY: Pathogenic NPHP5 mutations impair protein interaction with Cep290, a prerequisite for ciliogenesis. / Hum Mol Genet 2013, 22:2482鈥?494. CrossRef
    56. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, / et al.: Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. / Cell 2011, 145:513鈥?28. CrossRef
    57. Schafer T, Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, Gieloff V, Gerner M, Mattonet C, Czarnecki PG, / et al.: Genetic and physical interaction between the NPHP5 and NPHP6 gene products. / Hum Mol Genet 2008, 17:3655鈥?662. CrossRef
    58. Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, / et al.: In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. / Hum Mol Genet 2006, 15:1847鈥?857. CrossRef
    59. Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N, Attie-Bitach T, / et al.: The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. / Hum Mol Genet 2007, 16:173鈥?86. CrossRef
    60. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB: CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. / J Cell Biol 2010, 190:927鈥?40. CrossRef
    61. Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ: A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. / Nat Cell Biol 2012, 14:431鈥?37. CrossRef
    62. Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, / et al.: A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. / Nat Genet 2011, 43:776鈥?84. CrossRef
    63. Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, Sandoval W, Peterson AS: A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. / Nat Cell Biol 2012, 14:61鈥?2. CrossRef
    64. Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ, van Beersum SE, Mans DA, Hikida A, Eckert M, Knutzen D, / et al.: CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. / Am J Hum Genet 2008, 83:559鈥?71. CrossRef
    65. Wang WJ, Tay HG, Soni R, Perumal GS, Goll MG, Macaluso FP, Asara JM, Amack JD, Bryan Tsou MF: CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. / Nat Cell Biol 2013, 15:591鈥?01. CrossRef
    66. Zhang Q, Yu D, Seo S, Stone EM, Sheffield VC: Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet-Biedl syndrome protein complex, the BBSome. / J Biol Chem 2012, 287:20625鈥?0635. CrossRef
    67. Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC: BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. / Proc Natl Acad Sci U S A 2010, 107:1488鈥?493. CrossRef
    68. Stowe TR, Wilkinson CJ, Iqbal A, Stearns T: The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. / Mol Biol Cell 2012, 23:3322鈥?335. CrossRef
    69. Rachel RA, May-Simera HL, Veleri S, Gotoh N, Choi BY, Murga-Zamalloa C, McIntyre JC, Marek J, Lopez I, Hackett AN, / et al.: Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. / J Clin Invest 2012, 122:1233鈥?245. CrossRef
    70. Barenz F, Mayilo D, Gruss OJ: Centriolar satellites: busy orbits around the centrosome. / Eur J Cell Biol 2011, 90:983鈥?89. CrossRef
    71. Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N: Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. / J Cell Biol 1999, 147:969鈥?80. CrossRef
    72. Dammermann A, Merdes A: Assembly of centrosomal proteins and microtubule organization depends on PCM-1. / J Cell Biol 2002, 159:255鈥?66. CrossRef
    73. Lopes CA, Prosser SL, Romio L, Hirst RA, O鈥機allaghan C, Woolf AS, Fry AM: Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. / J Cell Sci 2011, 124:600鈥?12. CrossRef
    74. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. / Cell 2007, 129:1201鈥?213. CrossRef
    75. Sheffield VC: The blind leading the obese: the molecular pathophysiology of a human obesity syndrome. / Trans Am Clin Climatol Assoc 2010, 121:172鈥?81. discussion 181鈥?72
    76. Loktev AV, Zhang Q, Beck JS, Searby CC, Scheetz TE, Bazan JF, Slusarski DC, Sheffield VC, Jackson PK, Nachury MV: A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. / Dev Cell 2008, 15:854鈥?65. CrossRef
    77. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV: The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. / Cell 2010, 141:1208鈥?219. CrossRef
    78. Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K: Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. / Mol Biol Cell 2008, 19:1540鈥?547. CrossRef
    79. Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. / J Cell Biol 2009, 187:1117鈥?132. CrossRef
    80. Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC: Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer鈥檚 vesicle cilia function. / Hum Mol Genet 2006, 15:667鈥?77. CrossRef
    81. Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, Yang B, Braun T, Casavant T, Stone EM, Sheffield VC: Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. / Proc Natl Acad Sci U S A 2004, 101:8664鈥?669. CrossRef
    82. Shah AS, Farmen SL, Moninger TO, Businga TR, Andrews MP, Bugge K, Searby CC, Nishimura D, Brogden KA, Kline JN, / et al.: Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. / Proc Natl Acad Sci U S A 2008, 105:3380鈥?385. CrossRef
    83. Davis RE, Swiderski RE, Rahmouni K, Nishimura DY, Mullins RF, Agassandian K, Philp AR, Searby CC, Andrews MP, Thompson S, / et al.: A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. / Proc Natl Acad Sci USA 2007, 104:19422鈥?9427. CrossRef
    84. Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, Andorf JL, Mykytyn K, Swiderski RE, Yang B, / et al.: Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. / Proc Natl Acad Sci USA 2004, 101:16588鈥?6593. CrossRef
    85. Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC: BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. / Hum Mol Genet 2012, 21:1945鈥?953. CrossRef
    86. Fath MA, Mullins RF, Searby C, Nishimura DY, Wei J, Rahmouni K, Davis RE, Tayeh MK, Andrews M, Yang B, / et al.: Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. / Hum Mol Genet 2005, 14:1109鈥?118. CrossRef
  • 作者单位:William Y Tsang (1) (2) (3)
    Brian D Dynlacht (4)

    1. Institut de recherches cliniques de Montr茅al, 110 avenue des Pins Ouest, Montr茅al, QC, H2W 1R7, Canada
    2. Facult茅 de M茅decine, Universit茅 de Montr茅al, Montr茅al, QC, H3C 3J7, Canada
    3. Division of Experimental Medicine, McGill University, Montr茅al, QC, H3A 1A3, Canada
    4. Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, 10016, USA
  • ISSN:2046-2530
文摘
Cilia are hair-like protrusions found at the surface of most eukaryotic cells. They can be divided into two types, motile and non-motile. Motile cilia are found in a restricted number of cell types, are generally present in large numbers, and beat in a coordinated fashion to generate fluid flow or locomotion. Non-motile or primary cilia, on the other hand, are detected in many different cell types, appear once per cell, and primarily function to transmit signals from the extracellular milieu to the cell nucleus. Defects in cilia formation, function, or maintenance are known to cause a bewildering set of human diseases, or ciliopathies, typified by retinal degeneration, renal failure and cystic kidneys, obesity, liver dysfunction, and neurological disorders. A common denominator between motile and primary cilia is their structural similarity, as both types of cilia are composed of an axoneme, the ciliary backbone that is made up of microtubules emanating from a mother centriole/basal body anchored to the cell membrane, surrounded by a ciliary membrane continuous with the plasma membrane. This structural similarity is indicative of a universal mechanism of cilia assembly involving a common set of molecular players and a sophisticated, highly regulated series of molecular events. In this review, we will mainly focus on recent advances in our understanding of the regulatory mechanisms underlying cilia assembly, with special attention paid to the centriolar protein, CP110, its interacting partner Cep290, and the various downstream molecular players and events leading to intraflagellar transport (IFT), a process that mediates the bidirectional movement of protein cargos along the axoneme and that is essential for cilia formation and maintenance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700