The Neural Ring: An Algebraic Tool for Analyzing the Intrinsic Structure of Neural Codes
详细信息    查看全文
  • 作者:Carina Curto ; Vladimir Itskov ; Alan Veliz-Cuba…
  • 关键词:Neural code ; Pseudo ; monomial ideals
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:75
  • 期:9
  • 页码:1571-1611
  • 全文大小:1259KB
  • 参考文献:1. Atiyah, M. F., & Macdonald, I. G. (1969). / Introduction to commutative algebra. Reading: Addison–Wesley
    2. Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. / Nat. Rev. Neurosci., / 7(5), 358-66. CrossRef
    3. Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. / Proc. Natl. Acad. Sci. USA, / 92(9), 3844-848. CrossRef
    4. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. / J. Neurosci., / 18(18), 7411-425.
    5. Cox, D., Little, J., & O’Shea, D. (1997). An introduction to computational algebraic geometry and commutative algebra. In / Undergraduate texts in mathematics: / Ideals, varieties, and algorithms (2nd ed.). New York: Springer. CrossRef
    6. Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. / PLoS Comput. Biol., / 4(10).
    7. Danzer, L., Grünbaum, B., & Klee, V. (1963). Helly’s theorem and its relatives. In / Proc. sympos. pure math. (Vol. / VII, pp. 101-80). Providence: Am. Math. Soc.
    8. Deneve, S., Latham, P. E., & Pouget, A. (1999). Reading population codes: a neural implementation of ideal observers. / Nat. Neurosci., / 2(8), 740-45. CrossRef
    9. Eisenbud, D., Grayson, D. R., Stillman, M., & Sturmfels, B. (Eds.) (2002). / Algorithms and computation in mathematics: / Vol.? / 8. / Computations in algebraic geometry with Macaulay 2. Berlin: Springer.
    10. Hatcher, A. (2002). / Algebraic topology. Cambridge: Cambridge University Press.
    11. Jarrah, A., Laubenbacher, R., Stigler, B., & Stillman, M. (2007). Reverse-engineering of polynomial dynamical systems. / Adv. Appl. Math., / 39, 477-89. CrossRef
    12. Kalai, G. (1984). Characterization of / f-vectors of families of convex sets in R / d . I. Necessity of Eckhoff’s conditions. / Isr. J. Math., / 48(2-), 175-95. CrossRef
    13. Kalai, G. (1986). Characterization of / f-vectors of families of convex sets in R / d . II. Sufficiency of Eckhoff’s conditions. / J. Comb. Theory, Ser. A, / 41(2), 167-88. CrossRef
    14. Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. / Nat. Neurosci., / 9(11), 1432-438. CrossRef
    15. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path integration and the neural basis of the ‘cognitive map- / Nat. Rev. Neurosci., / 7(8), 663-78. CrossRef
    16. Miller, E., & Sturmfels, B. (2005). / Graduate texts in mathematics: / Combinatorial commutative algebra. Berlin: Springer.
    17. Nirenberg, S., & Latham, P. E. (2003). Decoding neuronal spike trains: how important are correlations? / Proc. Natl. Acad. Sci. USA, / 100(12), 7348-353. CrossRef
    18. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. / Brain Res., / 34(1), 171-75. CrossRef
    19. Osborne, L., Palmer, S., Lisberger, S., & Bialek, W. (2008). The neural basis for combinatorial coding in a cortical population response. / J. Neurosci., / 28(50), 13522-3531. CrossRef
    20. Pistone, G., Riccomagno, E., & Wynn, H. P. (2001). Computational commutative algebra in statistics. In / Monographs on statistics and applied probability.: Vol.? / 89. / Algebraic statistics, Boca Raton: Chapman & Hall/CRC Press.
    21. Schneidman, E., Berry, M. II., Segev, R., & Bialek, W. (2006a). Weak pairwise correlations imply strongly correlated network states in a neural population. / Nature, / 440(20), 1007-012. CrossRef
    22. Schneidman, E., Puchalla, J., Segev, R., Harris, R., Bialek, W., & Berry?II, M. (2006b). Synergy from silence in a combinatorial neural code. arXiv:q-bio.NC/0607017.
    23. Shiu, A., & Sturmfels, B. (2010). Siphons in chemical reaction networks. / Bull. Math. Biol., / 72(6), 1448-463. CrossRef
    24. Stanley, R. (2004). / Progress in mathematics: / Combinatorics and commutative algebra. Boston: Birkh?user.
    25. Veliz-Cuba, A. (2012). An algebraic approach to reverse engineering finite dynamical systems arising from biology. / SIAM J. Appl. Dyn. Syst., / 11(1), 31-8. CrossRef
    26. Watkins, D. W., & Berkley, M. A. (1974). The orientation selectivity of single neurons in cat striate cortex. / Exp. Brain Res., / 19, 433-46. CrossRef
  • 作者单位:Carina Curto (1)
    Vladimir Itskov (1)
    Alan Veliz-Cuba (1)
    Nora Youngs (1)

    1. Department of Mathematics, University of Nebraska–Lincoln, Lincoln, USA
  • ISSN:1522-9602
文摘
Neurons in the brain represent external stimuli via neural codes. These codes often arise from stereotyped stimulus-response maps, associating to each neuron a convex receptive field. An important problem confronted by the brain is to infer properties of a represented stimulus space without knowledge of the receptive fields, using only the intrinsic structure of the neural code. How does the brain do this? To address this question, it is important to determine what stimulus space features can—in principle—be extracted from neural codes. This motivates us to define the neural ring and a related neural ideal, algebraic objects that encode the full combinatorial data of a neural code. Our main finding is that these objects can be expressed in a “canonical form-that directly translates to a minimal description of the receptive field structure intrinsic to the code. We also find connections to Stanley–Reisner rings, and use ideas similar to those in the theory of monomial ideals to obtain an algorithm for computing the primary decomposition of pseudo-monomial ideals. This allows us to algorithmically extract the canonical form associated to any neural code, providing the groundwork for inferring stimulus space features from neural activity alone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700